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ABSTRACT

In this paper we consider the nonlinear wave equation,

W-But flw) =V  inQ=x]0.T(;
u(0) =ug,v' (0)=w inQ, g

u{z, i} =0 on Yi=Tx]0,T]

where f is a continuous function satisfying

lim sup &s_) > —00 (=]
|S|—+o0 s

and Q is a bounded domain of R™ with smooth boundary I We prove that

there exist a solution for (*) that satisfies the regularity conditions: % € L2 (Y).
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Moreover we have that there exist a constant C > 0 such that,

Ou
an

<C{E(0) +|Vp} (ren)

1. INTRODUCTION

Let £ be an open bounded set of R”, with boundary I" of class C2. Set Q = Qx]0, T
and ¥ = ['x]0, T'[. We will denote by (-, ) and (-,-), the inner product of L? (2)
and L? (Q)respectively and by ||y, .|g and ||.||, the norms in L? (Q) ,L?(Q), and

H} (2) respectively. We consider the nonliner problem:

u' - Au+ f(u)=V in Q;
u(0) = up,u (0) =v; in Y (1.1)

u(z,t)=0 on ¥

In J.L.Lions [1] was study the hidden regularity for system (1.1) when f (s) =
s and more generality for a f (s) = s|s|®, where e > 0. In this work we are going

to study the hidden regularity for the solution of the problem (1.1) when f is a



continuous function satisfying,

lim sup -&)- > —00 (1.2)
|S]—+ea

That is, we will show that there exist a solution u of the above problem such

that the normal derivate of u belongs to L?(Y). Moreover we will prove that

there exist a constant C > 0 such that:

ou

on

< CE, (1.3)
)M

where Ej is the initial energy of the system (1.1).

(Bo= 3 luilh + [ G () o)

where G (s) = 'jf (n) dn.



2. EXISTENCE AND HIDDEN REGULARITY

First of all we are going to construct a sequence of real numbers (s,),.y and

(5-.),en satisfying the following conditions,
se 2,V e N |f (s.)] SC+|f(s)],Vs 2 v (2.1)

50 Z =0, € NI (8,) < C+1f (s)],Vs > —v (2.2)

This sequences are going to play and important role in the sequel.
LEMMA 2.1.- Let’s f be a continnous function defined in R, then there exists
a sequence of real numbers, (s.),.n, and a positive constant C, independing of v,
satisfying condition {2.1) and (2.2).

PROOF .- Let’s consider the following problem.

I = inf{If (s)l;5 > v} (23)

If for all v € N, there exist s > v such that f(s,) = I,, then this sequence

satisfies condition (2.1). Now we can suppose that there exist a vg such that,

Fflsy>hy forall s>



This relations emply that [, = [, for all v > v, Let us put fy = Ly Since

Ty = inf|s(s)];s > W, there exists a sequence (tk)ien such that,

)= Io (2.4)

from the continuity of f we conclude that t; is not bounded, then there exist a

subsequence (tx,),cy satisfying:

Let us put s, = ti,, from (2.4) we obtain that there exist a constant C (in-
depending of v) such that |f (s,)| = |f (tx.)| < C, finally from (2.5) we conclude
that (s,), .y satisfies condition (2.1). By the same arguments we can prove the
existence of a sequence (s,), .y satisfying condition (2.2), only consider the prob-

lemn

I_, =inf|f(s)];s < —p,

and the result follows.

With the sequences (s,),cy and (s_,),ey constructed in Lemma 2.1 we define



a sequence (f,), .y of continuous function in the following way:

fol8) =1 f(s,) if s2 s, (2.6)

As a consequence of Lemma 2.1 we have that the sequence (f,), .n satisfies

the following properties:

()] <C+If (s)] for all v (2.7)

fo — f uniformly on bounded sets (2.8)

LEMMA 2.2.- Let’s f be a continuous function satisfying condition (1.2), and

(fu),en» the sequence defined in (2.6). Then there exist a positive constant Co

such that.

sfu(s)2 —Co(s*+1) Vse Vo2 (2.9)

[ 1 (s)ds > =Co (¢ + 21e) (2.10)
0



[ 1. (s)as

< %Cutt(t+3)i+/utf(s}ds (2.11)

PROOF .- First of we are going to prove that there exists a positive constant Cp,

such that
f(s)=-Cos V¥s>N and [f(s)<-Cos Vs<N (2.12)

In fact, if liminfs™'f (s) = +oo the expression (2.12) is valid. Now we can
suppose that liminfs~!f(s) = = < +oo, then for £ > O,there exist N > 0
such that s7'f(s) > =%, for |s| > N. Let us take C = sup {|f (s)|;|s| < N},
C, = sup {|sf (s)];]s| € N}, and put Cop = max {C,C,,Cy, |z ~ £]|} where C is the
constant in (2.7), certainly for this Cy, condition (2.12) is valid. Finally multiplying
the relations in (2.12) by s(|s| > N), we have by the definition of Cy, that the
first part of (2.9) is valid. The second part of (2.9) follows from (2.1), (2.2), (2.6)
and also, the definition of Cg, for v = N.

In order to prove (2.11), let us note that from (2.12) follows that:

fo(s) = —=Co(s+1) Vs20 and f,(s)<—Co(s—1) Vs<0 (2.13)



Integrating this expression we obtain (2.10). In order to obtain (2.11) let us

consider relation (2.7) then we have:

Uo F ls) iz

:] 1o () dsC ] + /!If(s) ds| VteR (2.14)
0 Jo

From (2.12) we obtain that f(s) > —=Cy{s+1) Vs > 0, which imply that

[f ()] < f{s)+2:0(s+ 1) ¥s > 0. Then we have:
t t
jo If (s)ds] < L f(s)ds +Cot(t +2) V>0 (2.15)
and since f(s) < |f (s)] we obtain,

[1rnas< [ 1)ds vez0 (2.16)

Finally from (2.15) and (2.16) we obtain (2.11).

Let ns denote by G, (t) = [ f, (s) ds, then we have that
¢, -+ G uniformly on bounded sets. (2.17)

Before to prove the main result of this paper we will prove an identity that



will be fundamental in that follows.

LEMMA 2.3.- Le & be a continuous function.Let ¢ = (g¢) a ficld of vectors of

class {C‘ (Q)]“. Then for all W satisfying.

We L (0,T; Hy () nH* () ,h (W) € L' (Q)

W' e L*(0,T; Hy ()

W e L?(0,T; L* ()

W'—AW+h(W)=V  in Q,
W (0) = Wo, W (0) =W, in &

W(z,t) =0 on. Y.

(2.19)

(2.21)




Where H is the primitive of h. Then we have.

QN i?;:l d¥ = [(W' (t) 'qk%ﬂ]: *

P x P x P d zdt—j‘l

6 qx (9.'“

PROOF .-Let us multiply (2.21), by ¢, 2% 8.1' , then we have that:

J{W" = BW + h (W)} que§ieda dt =
Q (2.22)
f ‘g de dt

Let us denote by:
I = W, % dz dt
Q N

I ]
fAWq ai

then we have:

=W o).a8 o), - IW’qk”W dz dt

2

’

- [(W' (t) ,qk"’—gg!)]o = %qujaiutdz dt

10



froin where we obtain that:

T
L = [(W (”"ikagly)) ] iz aq“ aw; dr dt
i1}

1]

on the other hand we have that:

12=_£g_ 2 {on 3%} do dt + fq WAy

R o [P i i
Q Q

+%q cJxBEdT.

= —gg——x%}xgg’dx dt — ;qua—g; |yW|*dz dt-i-%:qux

But since W = 0 on ¥ we have that:

W
ZZV T}k 3 on Z

and

awi®

WP = |5
\va’% 5

11

(2.23)

£538



we have:

Iy= - [ 8xZ¥xdzdt +} [ 2 |yW| da dt.
9 9 (2.24)
+%£qkm|§::| dy

finally since

/h(W)qk-u—dm dt = [ H(W)q = jH(W) b%—qk. (2.25)
2 2 N

we have from (2.22),(2.23),(2.24) and (2.25) that the result follows.
REMARK 2.4.- From Lemma 2.3 taking ¢ = (gi) a field of vectors of class
[C’ (ﬁ)]", such that

ge=mkon ) .

and putting:

D4k ()

C=SUP{]%($)|. 5$—k z ‘.k.j=1,...,nandxe?§}

12



we have:
4
1 | l-J\,L‘ dNT < 20y, " VIOE
)
T supy gy J () + Con [T (W) d dt s
Q

VA 4 CTsup J ()

2 q

+2C (sup J (1) + ¢

From where we have:

SeldYT <C(n+1)(2+T)suppq J (t) +

+Cnd V[, +£;H (W)| dz dt
REMARK 2.5.- From (2.21) we have that
W — AW + b (W) + bW =V 4 bW
mutiplying this expression by W and integrating in Q we have:
di

450 +[H(u') + bW dz b = (V, W), +b(V, W),
q

where J () = 3 {|W" ()" + W (1)}, 1f we put Cy = max {1, b+ 1.bc*}

13



(where ¢ is such that || < ||-||)we obtain, after integrate from 0 to t, that:

J(t)+f{H(M')+b{W) }dr %}1 2, + 2C,E (0) +c0f1 ds  (2.27)
Q

where E (t) is the energy associate with system (2.21), that is:

E(t)=J(t)+ [ H(W (z,0))dz
4

REMARK 2.6.- Multiplying (2.21), by W, integrating in Q, and applying

Green's formuls, we have that:

T .
[Wh(W)dz dt = [WV dz dt + [ [W' (£)[3 dt-
Q Q 0

T -
~ [IW @) dt — (W' (t), W (t))2,
0

from where we have that:

1
f Wh(W)da dt < 5 [Vl + (3T + 2C) supyo J (1) (2.28)
Q

(where C is such that ||, < C||-]|).
Now we are condition to prove the main result of this paper:

THEOREM 2.7.- Let (up,u;,V) be an elemente of the space

14



Hy () xL? () xL2(Q). and let f b a continuous function such that () €
L1(Q). Then there exist a function u: Q — R satisfying.

w€ L (0.7 HY (D) .o € L™ (0.7: H* () (2.29)

u - Au+ f(u)=V in Q;
w(0) = ug,u (0) =u; in € (2.30)
u(x,t)=0 on y
REMARK 2.8.- We are proving here that, exist one solution satisfying the last
two conditions. We don’t know if all solution of (1.1) satisfies this regulariry
result. This is an open question.
PROOF OF THEOREM 2.7.- Let (,op)peN be a regularizant sequence on R.

That is: p, € C*(R.),Vu e N and:

‘ 1
pu(8)>0 VseR and sopp (p,) C }ﬁ, i[ (2.34)
pop

Lpp (s)ds=1 VueN . (2.35)

15



Let us denote by ( Juu) e the sequence of bounded function defined by:
fou = fu "p, for a fixed v.

Then we have f,,, is a C* bounded function we now consider the following

aproximated problem.

up, = Auy, + fuw) =V in @
w, (0) = up,uy, =, in (2.36)

U, (z,t) =0 on: .

As well known that for every (ug,uy V) € H} (2) xL? () xL? (Q) there exist
an unigue solution for system (2.33). In order to obtain the existence of a solution
for the system (1.3), let us suppose that, V|, ug, u; be test function, then we have

that:

u,, € L (0,7 Hy () nH? (§2)) (2.37)

yy € L (O,T;Hc,' () (2.38)

16



v € L (0,7 H? (@) (2.39)

From Remark (2.4) we have that the normal derivate of u,,, satisfics the

following inequality:

2

3 |§~“ﬂi dy SC(n+1)(2+T)supJ.,(t)+

o

J
o (2 40)

+cn {; Vg +Qf IG.. (uv,,)|} dr dt.

Where by J,, (t) we are denoting the quadratic term associated to system (2.36),

that is:

Jon8) = 3 o (O, + 3 s O

By Remarks 2.5, we have that,

Jo (8) + [ Gy () + bl dz < § VI +

T
+2Cq E,, (0) + CUIJ)’J,,,, (s)ds.

and since b is a positive number, and G, is uniformly bounded for all 4 € N, and

17



a fixed v, we have by Gronwall inequality that there exist a constand C, such us:

Juw (1) =

| 2 1
3[4 B + 5 luw (O < €. (2.42)

where E,, (t) is the energy associated to system (2.36) with non quadratic term
Glr_u (uu.u) .

Finally from Remark 2.6 we obtain that:

f“u.uf\"u (wop)dz < +
Q (2.43)

+% lV%QQ + (37 + 2C)sup|0‘7~] Jvu (t).

Relation (2.41), (2.42), and (2.43) are valid when V, u; and u,are test function.

If we take a sequence of test function (Vin, Ugm, wym) satisfying,
(Vin, g, wim) — (V,ug,wy) strongly  in L (Q)xH3 () xL? ()

certainly we have that the corresponding solutions u,,,, converge to u,, solution

of system (2.36) , when the datas V, ug and u; are L*(Q), H} (2) and L? ()

18



respectively. Moreover we have:
Uyym — Uy, Strongly in L™ (O,T; H) (Q)) . (2.44)

Upum = e strongly in L% (0,T; L? () (2.45)

From (2.44) and (2.45) we conclude that relations (2.40),(2.41),(2.42) and
(2.43) are valid when (V,ug,u;) belongs to L?(Q)xHj () xL?(f2) and u,, is
solution of (3.36).

On the other hand, by (2.42) we obtain that there exists a subsequence of

(Uup) hen satisfying:

]

u,,, — u,weak star in L (O,T; H; (Q)) (2.46)

v

u,, — u, weak star in L (0,T; L* (0)) (2.47)

from (2.46) and (2.47) we have that there exist another subsequence (that we still

denoting in the same way) such that,

w,, — u, strongly in L?(Q). (2.48)

19



Wy — u, & e in Q. (2.49)

fou () — fu(u,) & e in Q. (2.50)

G..(u,) =G, (u) a e inQ. (2.51)

Since f,, is bounded for all ¢ € N (v fixed), then G,, is a Lipschitz's in R,
then by Lebesgue dominated convergence theorem we conclude that:

S () = fu () strongly in L*(Q). (2.52)

Gop (uo,) — Gu (u, ) strongly in L*(Q). (2.53)

Now, from (2.48) and (2.52) we obtain:
Uy, — u, strongly in L (O,T; H) (Q)) ; (2.54)

u:,ﬂ — u:, strongly in L™ (O,T; L* (Q)) ; (2.55)

Then by (2.40),(2.42) and (2.53) we obtain that there exist a subsequence of

‘g—:uu , which we still denote in the same way and a element X in L?(3) such

20



that:

auv,u . 2
B — Xv weak in L (Z) (2.56)
But since:
3”;:;. Ou, . -1 /2
g weak in H™' (0. T; H'/*(I')) .

we conclude that X, = %‘-;]“. From (2.54) and (2.55) we have in particular that:

Juu (t) = J, (1) uniformly on [O,T]. (2.57)

E,.(t) — E, (t) uniformly on [0,T]. (2.58)

Then form (2.40),(2.53) and (2.57) we obtain that:

L[ |2 dy < Cn+1) 2+ T)supo . (t) +
2 (2.59)
+Cn {% VI, + é IG, (u,,)|} dz dt.
Now by (2.41),(2.43),(2.48) , (2.53), (2.57) and (2.58) we obtain:
L)+ [{G, (w) +bluf"} <
o (2.60)

t
< }IVI5 +2CE, (0) + Co Df J, (s)ds.

21



1
j ufo () de dt S SIVIG + (3T + 2C) supo.y J, (1) (2.61)

From (2.10) and (2.59) taking b such that G, (u,) + b|u,|’ be positive, we
obtain:

L)<}

Lt
< 5 IVIg +2CoE, (0) + CofJ, (s) ds. (2.62)
0

Now by Gronwal’s inequality we obtain that:
1o CoT'
J(t) < {5 VI3 +2CoE, (0)} e%T Vit € [0,T). (2.63)

Since,

E.(0) = 5 {luall + w3} + [ Gu (uo) da,
>

we conclude from (2.12) and the hypothesis of Theorem 2.6, that the second
member of (2.63) is bounded by a constand C; > 0, independing of v, then from

(2.63) we have:
1 -
supo.zy v (t) < {5 VIS + 2CoE, (o)} OT < ¢, (2.64)

Then we have that there exist a subsequence of {u.,},reﬂ, that we still

22



denote on the same way, and a element  w € L> (O, T, H}(Q))  such that

u € L™ (0,T; L* (), satisfying:
w€ L (0,T; H () such that v’ € L (0.7:L2 (1)) , (2.65)

u, —u' weak star in L= (0,T; L* (Q)) . (2.66)

By (2.61) and (2.63) we obtain that:

u,fy (w) dz < 3Ce%T (V[ + E, (0)} < Cs. (2.67)

O

where C; = max {n,T,C,Co}. But from (2.9) we obtain that |u,f, (u,)| <

u, fu (u,) + 2Co (u? + 1), from where we have:
[ lu, f, (w)|dz < Cs + 4CoxCy med (Q) = Ca. (2.68)
Q
Then by (2.68) and from Theorem 1.1 of W.A. Strauss [4] we have that:
fu(w,) = fe) strongly in L' (Q). (2.69)

Then we conclude that u is a solution of problem (1.1). Finally from (2.59)

23



and (2.63) we have that there exist a constant Cy (independing of ) such that:

-/ iau,,
|
Ly
s

A < CAIVE + E.(0) + f|(.',, (et b (2 70)
Q

But from (2.60) and (2.64) we have that exist a constant Cg such that,

2]

=1

—
—

fc:l, () dr < G {IVI4 + £, (0)}. (2.
0

Now from (2.10) we have that G, (t) < —Co (t* + 2|t|), from where we con-
clude that |G, (t) < G, (t)|+2C (t* + 2|t|) taking t = u,, we have after to integrate

in (), that:

/(;1, (u,) dz dt < /Gu b ol b zcojui +2|u,| d dt. (2.72)
Q Q Q

On the other hand, there exist a constant C; such that:

[
b |
(e

fju.u} + 2 |u,|de dt < Crsupy L, (t) - 4
o)

From (2.70) , (2.71), (2.72) and (2.73) we obtain another constant, say Cy such

24



that.:

du,
an

4y < C{IVig+ E. (0)} (2.74)

%
Since the second member of (2.74) is bounded we obtain a subsecuence of,
(&)
M J ven
and a element X in L? (¥) such that:

Ou,

g X weak in L*(Y). (2.75)
But,
Ou, du, . - —1ipe
S i (0,7, w-1r-2# (1)) ,
Where p > 2, then we have that A’ = %—:;, and letting v — oo in (2.74) we have,
. .
[ 2] dT < cs{IViE + E(0)} Q.E.D.
i
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