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ABSTRACT

We prove the existence and uniqueness of global regular solutions to the mixed

problem for the nonlinear hyperbolic equation with nonlinear damping.

Utt - a (u) u + I u t IP Ut = f (x .t ) in (O, 1) x (O, T ) = Q,

u (o.. ) = u (l,t ) = 0,

u(x,O) = Uo(x), ut (x,O) = u¡ (x),

Where a (u ) ~ ao > 0, p > 1.No restrictions on a size of uo, u¡, f are imposed.

It is well-known that quasilinear hyperbolic equations, generally speaking, do not

have regular solutions for all t >0_Their solutions can blow up at a finite period of time.

See examples of such singularities in [1, 3]. On the other hand,it was observed that adding

a linear damping to the nonlinear hyperbolic equations one can expect the existence of

global regular solutions provided initial conditions and right-hand side have sufficiently

small appropriate norms, [2]. Moreover, in [3] was shown that the presence of the

nonlinear damping allows to prove the existence of regular solutions for the equation

without restrictions on a size ofthe initial data and f.

Later, using the idea of [3], we proved in [4] the existence of regular solutions for

the damped Carrier equation.

Utt -M ~u(t)12)L1U + alu, IP u, = f

without smallness conditions for the initial data and f .
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Here, we continue to exploit this idea and consider the following nonlinear mixed problem.

(1)

u ( 0, t ) = u (1, t ) = 0, (2)

u (x, ° )= Uo (x), Ut (x, ° )= Ul (x ), (3)

where a(u) is a smooth positive function.

Unlike the Carrier equations. (1) has local nonlinearities: the function a(u) depends

on a solution; and the function M (1 u (1 )12 depends on the L2 - norrn of it. This difference

makes study of (1)-(3) more complicated and forces us to consider only the one-

dimensional case. Nevertheless, the basic technique is similar to one used in the case of

the Carrier equation in [4]. Under natural conditions for a(u), we prove the existence and

uniqueness ofregular solutions to (1)-(3) without any restrictions on a size of uo, Ul' f.

Assumptions .

.Al. a(U)E el (R); a(u)~ao >0.

A2. laul~Aa(u).

A3. 1< p,

Where ao, A are positive constants.

In the sequel, we use standard notations for functional spaces, see [5].

Theorem. Let T be an arbitrary positive number; Uo EH2(0,1)nH6(0,1) and A1-A3 hold.

The for any fsuch that f,fl EL2, there exists a unique regular solution to (1)-(3), u(x,t):

UELOO(0,T;H2(0,1)nH6 (0,1)}

», e I" (0,T;H6 (O,l)}

uttELOCJ (0,T;L2 (0,1))
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The scheme of the proof.

The assumption Al allows to rewrite (1) in the equivalent form

1 lu f I
P u f f--u -u + =--a (u) ff a (u ) a (u )

(4)

Obviously, solutions to (4), (2), (3) are also solutions to (1)-(3). Equation (4) is

similar to the c1ass of quasilinear hyperbolic equations studied in [4] with exception of the

damping that can degenerate when a(u)~ co,Also, the coefficient of utt , (a~) can be

zero. It means that (4) is the degenerated hyperbolic equation. Morever, dependence ofthe

damping term of u and ut brings more difficulties to analysis of (4), (2), (3). Nevertheless,

we can employ in our case the technique developed in [4].

Approximate solutions to (4), (2), (3) will be constructed by the Faedo-Galerkin

method with the special basis. Let W j (x) be eigen- functions ofthe problem

Then for E> O

N

u~ (x, t) = ¿gf (t)Wj (x),
i=!

where unknown functions g j (t) are solutions to the following Cauchy problem

(5)

(6)
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(7)

Here (u, v)(t) = lu(x,t)v(x,t)dx.

The system of nonlinear ordinary differential equations (6) is not solved with

respect to g jti» but it can be transformed a normal system of ODE due to the fact that the

matrix E 1 + (L a (u ~ N ) W j , Wi ). i, j = 1, ...., N, is positive for E> 0, see Al.

Hence, the Cauchy problem (6), (7) has solutions gJ at some interval (O, TN)' and we

need a priori estimates in order to prolongate solutions to the interval (O, T)and to pass to

the limits when E -+ ° andN -+ co,

The First Estimate

Multiplying (6) by g; and usmg Al-A3, after some calculations we come to the

inequality

(8)

where C does not depend on E, N, t.

From here and from Al.

Sup max I u(x,t~ se; (9)

te(O, T)XE(O.I)
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This imply

(10)

Where Cs, M do not depend on E, N, T.

The Second Estimate

Taking the derivate of (6) with respect to t, multiplying the result by g;l' after

standard transformations we obtain

í(1U ~t (x, t~2 + Iu :xt (x, t~2 ) dx ~

(11)

e 3 (11 u a IIH 2 (a, l)n H 6 (a, 1)' 11u lllH 6 (a, 1)' 11f IIH 1 (a,T , L3 (a, 1)))'

where C3 does not depend on E, N, t.

Finally, taking into account (5) and estimates (8)-(11), we get

1 2
fa Iu E XX (x, t ~ dx::; e 4 (12)

With (8)-(12) it is easy to pass to the limits in (6) when N ~ 00, E ~ 0, hence, to prove

the existence ofregular solutions to (4), (2), (3) and, consequently, to (1)-(3). Uniqueness

may be proved in the usual way.

Theorem is proved.

Remark. The function a(u) can depend on x, t.
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