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ABSTRACT

This paper is concerned with the existence of global solutions of an initial and

homogeneous boundary problem for the damped Carrier equation

where Mis a positive real function and p> 1.

1. Introduction

Let Q be a bounded open set of R n with boundary r of class e2. We consider a

partition {ro X¡} of r such that r¡ is open in I', mes (r¡)> O, mes (10) > O and

Fo n F¡ :f::- ~. In this paper, the authors investigate, by using Galerkin's method, the

existence and uniqueness of global solutions for the following mixed problem:

u"- M (sn \U\2 dO.) Su + \ur u'= ° in o. x [0,00 ),

u = ° on fo x [0,(0),

(1.1 )

(1.2)

ou + bu' =O on 11 x [O, ro),
ov

(1.3)

(1.4)
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Here M(A) is a positive real function of class el on [o, a)); the vector V denotes an

outward unit normal to the boundary I' and eS is a function in w 1. cc (r) such that

<3(x) ¿ O. By u', U 11 we denote the time derivatives of u.
Global solutions for equation (1.1) with null Dirichlet boundary were obtained by e.

L. Frota, A. T. Cousin and N. Larkin [3] and for the Kirchhoff-Carrier equation without

damping by A. T. Cousin, e. L. Frota, N. Larkin and L. A. Medeiros [2].

2. Preliminaries

In order to formulate our results we consider the Hilbert space

with inner product and norm given by:

The inner product and norm of L2 (O) are represented by (.,.) and 1.1, respectively.

Let W be the space of functions u,' Q ~ R such that u E V, /l..u E L2 (O) and there

1S s; E H1/2 (r) which satisfies gu == ° on lo and

(2.l)

We remark that gu verifying (2.1) is unique. The space W is equipped with the norm

Then W is a separable Hilbert space and W is compactly embedding into V.

Proposition 2.1 The space W is dense in V.

The proof of this Proposition, based on the density of D( - /1,,) in V, is reasonably

straightforward and follows arguments close to the used in [4].
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Remark 2.1 Jf u E W then O U E H -1/2 (r) and it holds thatov

/~,v) = (gll,vt2(r) for all V E V.
\ a v H -1 /2 (r-), H 1/2 (r)

This implies by taking v E D(r¡) that

OU
in HII2 (r.)ov = gu

3. Main Result

In order to obtain the existence ofglobal solutions ofProblem (1.1) - (l.4), we assumed

the following supplementary assumptions on M:

M(A) 2 mo > O (mo is constant), (3.1)

(3.2)

where M' (A) denotes the derivative of M with respect to A and Ko is a constant.

Remark 3.1 Jf we consider smallness restrictions on the initial data uOand u1
, then

above hypothesis (3.2) on the function M becomes unnecessary.

We also impose on the real number p the conditions:

p > 1 if n = 2,

n+2
l<ps-- if nz3.

n-2

(3.3)

Theorem 3.1 Assume that the conditions (3.1) - (3.3) are satisfied and that

uD E V, ul E V verify L1 uO EL2(Q),

(3.4)
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Then there exists a unique function u: Q x ] 0,00 [~R in the class

U E Llac (0,00; W), U' E Llac (0,00; V), U" E Llac (0,00; L2 (Q)),
S1/2u" E LToc (O, 00; L2 (r1))

satisfying the equation

u" - M(lu012 )~u+ lu'IPu'=O in L~)c(0,00;L2(Q))

and the initial conditions

Furthermore u verifies

oU+5u'=O
ov in

Bu' "" O-+ uU =
Bv

in

Rernark 3.2 Jf uO is in the conditions ojTheorem 3.1 then u D E W and

(- ~uO,v)=((uO,v ))+(Su1,v )L2(r)' joral! VE V .

. The next result has a fundamental role in the proof of Theorem 3.1.

Lernrna 3.1. Let us suppose that uD E V, LI uD E L2 (.o) and ul E V with

(- L'l uD, v)= ((uD, v ))+ (5 u1, v )L2 (r)' joral! V E V.

Let e > o. Then there exist w and z in W such that

(_ flw,v)=((w,v))+(5z,V)L2(r), joral! v E V,

Proof. Fixe e > o. By Proposition 2.1, there exists z E W such that 11 z - u' 11 < e .

Let w be the solution ofthe variational problem

W E V

((w,v)) = (-fluD,v )+(5z,v )L2(f) for al! V E V.
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Then ~w = ~u o; moreover

1~w - ~UOI2 + 11- 5z + 5Ulll~1I2(r)

~e Ilz - ul II~II2(r)
s el IIz - ul 11 2~ el E

2

where el is a positive constant that depends only of 5 and Q. Thus w, z EW and

(- ~ w, v)= ((w, v ))+ (5z, V)L2(r)' for al! v E V.

Proof of Theorem 3.1 From Lemma 3.1 there exist sequences (u~) and (ul)1' of vectors

belonging to W such that

o o 1 . WU,e ~ u strong y In

1 I lv L VU1. ~ u strong y In

(- ~u~, v)= ((u~, v ))+ (5u~, v)¡}(r), for all v E V

(3.5)

(3.6)

(3.7)

From above sequences, for each e E N, we construct a special basis of W in the

following way: first, we determine a orthonormal basis w! of the subspace of W spanned

by u~ and u~ ( ¿ fixed). Thus k = 1 or k = 1,2.. Then by the orthonormalization process,

we complete (wf) just to obtain a basis of W . This special basis of W is represented by

In what follows ¿ is fixed, unless we mention the contrary. For m E N let us consider

the subspace w,,; spanned by {wl1', w1 , ..., w,;,} and the approximate solutions U/m (t) of

Problem (l.1) - (l.4), defined by

111
uh,,(t)= ¿gIj1ll(t)wf,

j=1

where gljm are the solutions of the approximate equation

(U:~(t), w) + M(I uem(t) I 2 ) ((uem(t), w)) +
(3.8)
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with the initial conditions

(3.9)

Taking into account (3.2) and denoting M (1U 1111 (t)12) by Jl (t), we rewrite (3.8) as

Notice that the solution uelll defined on [O,tm[ can be extended to the interval [O,T], for

any real number T > 0, by the next first a priori estimate. We need two a priori estimates.

First a Priori Estimate- By choosing w = 2 u;m (t) in (3.10) we obtain

whence by using (3.1) and (3.2) it follows that

(3.11 )

Moreover, since LP+2(0.) ~ L2 (O), there exists CI = CI (Ko, D.) such that

The use of the Young's inequality, for all e > 0, yields
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By choosing a suitable é > O, we have

Integrating on [O,t[ with °< t < tni' by the Gronwall inequality and convergences (3.5) -

(3.6), for all O~ t ~ T and -e ~ -eo, we obtain

Thus for m E N and -e ~ -eo it follows that

(UeJ is bounded in Llac (0,00; V),

(U~m) is bounded in Lloc (0,00; L2 (0)),

(51/2 U~III) is bounded in LToc (0,00; L2 (11 )),

(u~m ) is bounded in u:2 (0,00; LP + 2 (0)),

(3.12)

Note that in the obtention of (3.12)2 we have used the fact M E el ([o,ooD and (3.12)¡.

Second a Priori Estimate - In order to obtain estimate for u~m (t), we differenciate (3.1O)

with respect to t and then we choose w = 2u:1I (t). So, we obtain

2,u'(t) 1" ~2 2,u'(t) (1' Ip' "),u (ty ueJt ~ + ,u (t )2 u¿Jt ) u¿Jt ), u¿Jt) .
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Note that for e > O

( 1U ~III (t )1 p u~III (t), u~III (t)) = (1 U ~III (t )1 ~ u~III (t), 1U ~III (t )1 ~ u~III (t))

~ ~(lu~lII(t)lp'~~III(tY ))+ 2
1
& Ilu~lII(t)ll~p:;(n)"

So,

(3.13)

Taking a suitable e and integrating on [O,t(, for all -l ¿ -lo, we get

(3.14)

To finish the second estimate we need to bound (u~"(o))in L2 (o). In this point becomes

c1ear the importance of the special basis that we have constructed. In fact, we make t = O

in (3.10) and take w= U~/I (O). This yields

By using Green's Theorem we obtain
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and by using that 8u~ + 5 u~ = ° on 1), we get
8v

Then, taking into account (3.3) and (3.4), we have V ~ L 2(p + 1) (O) and therefore

Combining the above inequality with (3.14) and (3.12)4, for m E N and L ;;::~,we get:

(u~m) is bounded in Llac (0,00; V),

(u ~m ) is bounded in Lloc (o, co; L2 (o)),

(51/2 U~III) is bounded in LToe (o, co; L2 (r¡))

(3.15)

Estimates (3.12) and (3.15) allows us, by induction and diagonal process, to obtain a

subsequence (u~:) of (u.eJ which will be also denoted by (ueJ, and a function

u :O x] 0,00 [~R satisfying:

u.em~ u weak star in Llac (0,00; V),
,

U.elll ~ u' weak star in Llac (0,00; V),

U~III ~ u' weak star in Lra: 2 (0,00; LP + 2 (0)),

U~III ~ u" weak star in Llac (0,00; L2 (0)),

51/2 u:" ~ X weakly in LToc (0,00; L2 (1)))

(3.16)

and as a consequence
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81/2 u' ~ 81/2 u' weak star in r: (O co: H1/2 (r ))
-fin loc ~, , I . (3.17)

Convergences (3.16) and (3.17) allow us to pass to the limit in (3.7). Moreover, by using

the regularity (3.16) of u, we obtain

u" - M (Iu 1
2) />'U + lu'IP u' = O in L%e (0,00; L2 (O)) (3.18)

From the assumptions (3.3) and (3.4), it follows that Vc.".r2(P+I) (O) .. So, we take into

account (3.18) to deduce that /1u E Llae (O, 00; L2 (O) ; and as u E Loo (O, 00; V), we get

ou 00 ( -1/ 2 ( ))~ E Llae \0,00; H r.
8v

Since W is dense in V, after to pass to the limit in (3.8), we obtain

fa"'(u",v)e dt + fa"'M(lu(.)12 )((u,v))e dt +

[M(lu(.)12) f 8u'vedrdt + f"'(lu'IPu',v)e dt==I),o J~ Jo

(3.19)

for all v E V and for all () E D (0,00). On the other hand, multiplying (3.18) by ve with

v E V and () E D(O, 00) integrating and using Green's Theorem, we have

fa'" (u", v)e dt + fa'" M(lu(. r)((u, v ))e dt-

-rM(¡u 01' )(:»e di + r (lu'IPu', v)e di = O,

(3.20)

where (.,.) denotes the duality pairing between of H-1/2 (l) and H1/2 (r). So,

comparing (3.19) with (3.20) we have

fa'" / M(lu 012
)[~: + 8V']' t/J) e dt = 0,

\ H-1I2(r),H'I2(r)

for all I/J E D(r1) and () E D 00, ooD. This and regularity (3.17) imply
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Bu + ou' = ° 00 { 1/2 ( ))Bv m Llae \0,00; H f). (3.21)

Frorn above equality we can conc1ude that gil == ou'. Therefore u E Llae (O,00; W).

Moreover, as shown in [4], frorn (3.21) it follows that

Bu' s: " °- +uU =
Bv

but by (3.16)6 we have oU"E4oJo,00;L2(f¡)), therefore the last equality is verified in the

space L~oc(0,00; L2(rt))·

Uniqueness of solutions and the verification on the initial conditions are showed by the

standard argurnents.
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