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ABSTRACT

This paper is concerned with the existence of global solutions of an initial and

homogeneous boundary problem for the damped Carrier equation
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where M is a positive real function and p > 1.

1. Introduction
Let Q be a bounded open set of R" with boundary T' of class ("?>. We consider a
partition {FO,FI} of T such that I} is open in T, mes (I} )>0, mes(I,)>0 and
Ton I # ¢. In this paper, the authors investigate, by using Galerkin’s method, the

existence and uniqueness of global solutions for the following mixed problem:

u'-M (JQ|u12dQ) Au+|uu=0 in Qx[0,), (1.1)
u=0 on T, x [0,), (1.2)
z—:ﬂsu':o on T, x [0,®), (1.3)
ulx,0)=u"(x), u'(x,0)=u'(x) in Q (1.4)
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Here M()) is a positive real function of class @ on [0,0); the vector v denotes an
outward unit normal to the boundary T and O is a function in w"*(I) such that

§(x)=0. By u',u" we denote the time derivatives of u.

Global solutions for equation (1.1) with null Dirichlet boundary were obtained by C.
L. Frota, A. T. Cousin and N. Larkin [3] and for the Kirchhoff-Carrier equation without
damping by A. T. Cousin, C. L. Frota, N. Larkin and L. A. Medeiros [2].

Preliminaries

In order to formulate our results we consider the Hilbert space
Vz{ve H'(Q) v=0 on T,
with inner product and norm given by:
2 d ] : d ’ g
u v u
((HV))= ; Lar— x)a x)dx and ||ui|{; L[E;—(x)] dx]

The inner product and norm of 72 (Q) are represented by (.,.) and |.|, respectively.

Let W be the space of functions #: Q) — R such that 4 ¢ V, Au e I? (Q) and there

is g, e #Y2(r) which satisfies g,=0on T, and
(—auv)=(wv)~ (V)2 (@), fordl yevy. @.1)

We remark that g, verifying (2.1) is unique. The space W is equipped with the norm

1/2
lull, =(aul +1e g

Then W is a separable Hilbert space and W is compactly embedding into V.
Proposition 2.1 The space W is dense in V.

The proof of this Proposition, based on the density of D(~A) in V, is reasonably

straightforward and follows arguments close to the used in [4].



Remark 2.1 If u e W then Z_u e H ™2 (T') and it holds that
v

<—,v> i (gu"”)ﬁ{r) for all veV.
av 21, H V()

This implies by taking v D(ri) that

Mg, i H'(T)
ov
3. Main Result
In order to obtain the existence of global solutions of Problem (1.1) — (1.4), we assumed

the following supplementary assumptions on M:

M(1)=m, >0 (myisconstant), (3.1)
"(4

where Af’ denotes the derivative of M with respect to ) and x, is a constant.
M' (A P 0

Remark 3.1 If we consider smallness restrictions on the initial data u° and u', then

above hypothesis (3.2) on the function M becomes unnecessary .

We also impose on the real number p the conditions:

o5l i a=2,
) e TR A i, Ge2)
n-—2

Theorem 3.1 Assume that the conditions (3.1) — (3.3) are satisfied and that

WLev,uler verify A4’ e} (Q),

ou’
ov

+8u'=0 in H"(T). (3.4)
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Then there exists a unique function u:Q x] 0,00 [—) R in the class

ue Lp, (0,00,W), u'e Ll (0,0;V), wrzﬁC@;mngnl
5% e 13, (0.0 22(1y))
satisfying the equation
u" — M(|1,1(.)|2 )Au+ | |"u'=0 in L (O,oo;Lz(Q))

loc

and the initial conditions
u(0)= u®, u'(0)= ul.

Furthermore u verifies

‘Z_”+5u':0 in L% (O,OO;H'”(FI))a
v

loc

ou'

ov

+6u"=0 in H, (O,OOQL2 (Fl))’

loc

Remark 3.2 [If ' is in the conditions of Theorem 3.1 then ,° ¢ w and

(* AMO,V)= ((uo,v))Jr (5”1’V)L2(r)s Jorall ve v

The next result has a fundamental role in the proof of Theorem 3.1.

Lemma 3.1. Let us suppose that 10 ¢ v, A4° e 1*(2) and u'e Vv with
(f Auo,v)= ((uo,v ))+ (5u1,v )Lz (r) forall v e V.

Let ¢ > 0. Then there exist w and z in W such that
(7 AW:V):((W,V))+(5Z,V)L2(r), foral v e V,

0 1
|w-u|y <& |2-4] <e.

Proof. Fixe ; > . By Proposition 2.1, there exists z € J such that ”z—ul ” < .

Let w be the solution of the variational problem

welV
(w,v)) = (—AHO,V)+(5Z,V)L2(F) for all v € V.



Then Aw = Au®;moreover

Hw—u()”;, = IAW— Au0|2 - H— oz + §u1H,2L1”2(1')

<l
<G “z—u'“2 =G, 3

where (¢, is a positive constant that depends only of ¢ and Q. Thus w,ze W and

(—Aw,v):((w,v))+(5z,v),;(l_), for all veV.

Proof of Theorem 3.1 From Lemma 3.1 there exist sequences (u{i,) and (u] ){ of vectors

belonging to W such that

u) >’ stronglyin W 345)
u, > u' strongly in V (3.6)
(- aulv)= (S, v)+ (61 v)p ), forall y e ¥ (3.7)

From above sequences, for each ¢ € N, we construct a special basis of W in the

following way: first, we determine a orthonormal basis w; of the subspace of W spanned
by u) and u, ( £ fixed). Thus k=1 or k=1,2.. Then by the orthonormalization process,

we complete (w,f ) just to obtain a basis of W . This special basis of W is represented by
{ Z £ £ }
Wi s Wy penes W ene -

In what follows £ is fixed, unless we mention the contrary. For m € N let us consider

the subspace W spanned by {wf, Wy 5y w‘f} and the approximate solutions u, (¢) of

m m

Problem (1.1) — (1.4), defined by

m

2
ufm (t) T Z gg’ﬂ]l (t)wj >
Jj=1
where g im AT€ the solutions of the approximate equation

61, 0) + 2]t )l ) +

(3.8)

M{Jun ) [, G0 war

u;m (rj*’ i, (1), w):O, for all we W,
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with the initial conditions

u,, (0)=uy, u,, (0)=1u, . (3.9)

u,, (t)lz) by u (t), we rewrite (3.8) as

", 0, w)
0

-0. 3.10
wu(t) aa

Taking into account (3.2) and denoting M (

"

u"”‘() + ((u, (7 - u w +(
G+ (G .m) [ su, ()war

1
uf,m

Notice that the solution u,, defined on [0,7, [can be extended to the interval [o, 7], for

any real number 7" > (), by the next first a priori estimate. We need two a priori estimates.
First a Priori Estimate- By choosing w=2u,, (¢) in (3.10) we obtain

o[

dr| )

ol

U ‘m

# o OF | + 2 [ o, O ar +

ufur (t)

2

2

). )= 24

whence by using (3.1) and (3.2) it follows that

U (£) .
2= (;)l t Jua@F | + 2 [ sl @ ar+

(3.11)
2

#(0)

uf'm (t)

p+2

i) S #(f)

f‘m (

Moreover, since L +2(Q) g2 (Q), there exists C; = C; (K, Q) such that

I

t,, (t)

2K,

e

3

s a2
Uy, (IX =—73 () *

Ll

The use of the Young's inequality, for all ¢ >0, yields

p+2
P43

PR G
T p+2 g p+2

u im (t)

u;}}f ([) ;

1 (Q)

6.

ty, 1)

p+2
Loty

< Gle)+Ce




By choosing a suitable ¢ >0, we have

d u;im (t)‘ i

2 ; C,
a0 [+ 2 [k oh s &

u{’m (f)

G ).

772 (Q) =

Integrating on [0, t[ with 0<r <, , by the Gronwall inequality and convergences (3.5) —

(3.6), forall 0<¢<T and £ = £, we obtain

L (t )

u(r)
'

¢ “‘zm(s) 1742 (Q)
()*“ H

& L-Td s < C,(e)T +

]

U gy ('r)l‘2 +2 J‘Or L’|§(u;”’ (S))Z dsdl” +

R

Thus for m € N and £ = 4 it follows that

(u,, ) is bounded in L7, (0,c0; V),

( )13 bounded in 12, (o oo; L2 (Q)), (3.12)
(5 o ) is bounded in 72 (o wo; I2 (T ))

(u " ) is bounded in L’”Z (0 oy [P2 (Q))

Note that in the obtention of (3.12), we have used the fact 37 e ¢! ([0, [) and (3.12);.
Second a Priori Estimate - In order to obtain estimate for u:m (), we differenciate (3.10)

with respect to t and then we choose w =2u,, (t). So, we obtain

LU

d | [Hen (¢)
ar| pl)

u&u (

*1+2 . (Zm )de+pa;(

INONE

2 (0,0}
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Note that for ¢ >0

(

So,

s O] 113 0.1 ©)) = [ e )

A
< —
&

0.t O )
’, (u;'m (ty D e "2157 u&" (t)

p+2
()"

I
u&u (t

d u/ﬂw (t) s

dr| plt)

(55

Taking a suitable & and integrating on [0, ], for all .£ > ¢, we get

(42 [ sl @F ar+

+ u;}" (t )

(3.13)

" t, ()]
g (uz (¢ )2j < 2CT([)L .\ i

U

U (t )

p+2
e (511

1
ufm (t)

g, 1)
u(t)

7

2+ 2 -E_[n5(u:;"(s))zdfds+

G | [ (u{,,,( ))J u;E;);'z 4} (3.14)

w)
' +2¢ | ) ds+ - |

+ u[m

U pn (S )

f

p+2
1 () das.

“rm (5 )

To finish the second estimate we need to bound (u:’ (0))1'}1 *(©). In this point becomes

clear the importance of the special basis that we have constructed. In fact, we make =0

in (3.10) and take w = u:ﬂ, (0) This yields

" 0)? . 3 ”l’ p u}_,,u;m
1(0) ¥ ((“rm(o)auzm(o)))+ Lﬁu‘[m ugﬂ,(ﬂ)dl"+0 l ) (0))

=1,

By using Green's Theorem we obtain

"
ufm

#(0)

2=@&@mﬂj

Tl

0 " 1 |p 1, 0
(%”%J%(O)dnu”" st )),

ov
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i, (0)
£(0)

>

o ; Q 2 a1 (0)
(au" +5uLJ 1,,(0) dl" - u[| Z‘(O;tf’"( )

 aut i 0))- |

ril ov

0
and by using that goy
ov

+6ul, = 0 on I}, we get

p+1
Ll(pﬂ)(n) -

e O3 #©||aut| + [u
Then, taking into account (3.3) and (3.4), we have ¥ (_y L *"(Q ) and therefore

SCy(O)UAuH - ‘ui "“].

u,, (0)

Combining the above inequality with (3.14) and (3.12)4, for m e N and £ 2.4, we get:
(u;m) is bounded in 2, (0,00; ),
(uz) is bounded in 12, (0,¢0; 12 (@) (3.15)

(5” 2 u;m) is bounded in 72 (O, wo; L* (T ))

Estimates (3.12) and (3.15) allows us, by induction and diagonal process, to obtain a

subsequence (uf;,’ﬁ)) of (ulm) which will be also denoted by (u m), and a function

u:Qx]0,00[— R satisfying:

u,, —u weak starin L. (0,00; V),
u;m — u' weak star in 3. (0,005 V),
U, — u' weak starin [ : : (0, oo; [P +2 (Q)), (3.16)

gy = " weak star in L7, (0,05 2 (@),

s u:?” — X weakly in Iz (0,00; I* (Fl ))

loc

and as a consequence
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5"’ u:,_.m — 5" u' weak star in L7, (0,00; g2 )) (3.17)

Convergences (3.16) and (3.17) allow us to pass to the limit in (3.7). Moreover, by using
the regularity (3.16) of u, we obtain

w = M (|u]?)du+|u|?uw=0 in Lf, (O,OO;LZ(Q)) (3.18)

From the assumptions (3.3) and (3.4), it follows that V'(_,L*’*"(Q).. So, we take into

account (3.18) to deduce that Au e L, (0, o0; 12 (Q) ;and as u e L (0,00;7 ), we get

8 _
az e I, (O,OO;H ”2(1")).

Since W is dense in V, after to pass to the limit in (3.8), we obtain

J:U(U",U)B dt + J:OM(IM(.)F )((u,u))g A

(3.19)

fM(|u(.)|2)Lau'uadrdr+ [ (jul>w.v) 6 dr=o,

forall v eV and for all ¢ € D(0, ). On the other hand, multiplying (3.18) by v with

v eV and @ e D(0, «) integrating and using Green's Theorem, we have

[[@v)odr+ ["m(u()f)(@ o) d -

(3.20)

~ [ m{ju (.)|2)<2_j,u>9 dt+ [ (jw|ou,0)0 dr =0,

where (’, \ denotes the duality pairing between of F2(r) and g'2(T). So,

comparing (3.19) with (3.20) we have

[ <M(lu (_)|2)B_3 +5U},w> .
H"”l(l"].Hl"lfl')

forall p € D(I}) and @ e D(]0, ). This and regularity (3.17) imply



O 160'=0 i I3, (o,oo;H”z(rl)). (3.21)

ov

From above equality we can conclude that g = su. Therefore u e L, (O, oo;W).

Moreover, as shown in [4], from (3.21) it follows that

5%' " 1 = E
E+§u =0 in Hj. (O,OO;H 1/2(F1)),

but by (3.16)¢ we have 5u"eliac(0,w,L2(R)), therefore the last equality is verified in the

space L2, (0, »; I2(T7)).

loc

Uniqueness of solutions and the verification on the initial conditions are showed by the

standard arguments.
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