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GLOBAL EXISTENCE OF SOLUTIONS FOR THE
DEGENERATE WAVE EQUATIONS OF KIRCHOFF
TYPE WITH NONLINEAR DISSIPATIVE TERM
OF VARIABLE COEFFICIENT

E. Cabanillas, J. Bernui & Z. Huaringa'

ABSTRACT. In this paper we investigate the global existence and
decay of solutions to a degenerate wave equations with nonlinear dissi-
pative term of variable coefficient.

1. INTRODUCTION

The objective of this paper is to study the global existence and the
decay property of the nonlinear system:

W — M ([, |VulPdr) Au+a(z)g(w) =0 in Q=0x]0.T|
pe) in ) =TIx]0.T]
u(z,0) = uo(x), %(z,0) = uy(x) in Q

where () is a bounded open domain in RY (N > 1) with a smooth
boundary I', T > 0, M(s) = s, Vs > 0, A is the Laplace operator, g
and a are functions satisfying suitables conditions.

Existence of global solutions to the system (P) has been investigated
by many authors (ef. [1], [2], [4], [7], [8], etc) for different and posi-
tive constant, with a positive or non-negative function. Mochizuki [3]
investigated the nondegenerate problem con dissipative term a(r, #)u'.
Our purpose in this time is to prove the global existence and decay rate
of solution for the case: M(s) = s and a(r) is a positive function.
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2. PRELIMINARIES

In the sequel LP(Q2). 1 < p < oo will denote the collection of L-
functions which are pth-integrable over €2. For m € N, the space H™({2)
is the Sobolev class of the functions of the spatial variable r wich along
with their first m derivates belong to L?(Q) (See, for example Medeiros
& Milla Miranda [3]) and the closure in H™(Q2) of the space D(Q) of
the test functions on €2 is denoted by H{'(2) the inner product and
norm of L2({2) are represented by (-,-) and | - | respectively.

Let X be a Banach space, T > 0 or T = 4+oc and 1 < p < x.
denote by LP(0.T:X) the Banach space of all measurable functions
u :]0,T[— X such that t — |u(t)|x is in L7(0.T), with norm

T Y/p
U] Lro.mx) = (/ Iu(f)}?)’(de X
Jo

"

if 1 <p<oc,and if p = oc, then

|u|Lro.1.x) = ess suplu(t)|x.
We use the following well-known lemmas without the proof in this
paper:

Lemma 2.1. (Sobolev - Poincaré) If u € H)(Q) then u = L4(QY) and
the inequality

uly < Gyl Wl

4

holds, where q 1s a number satisfying 1 < ¢ < 5 if N > 2 and

1<g<wifN=2and1<g<x0if N=1

.

Lemma 2.2. (Nakao [6]) Let ¢(t) be a nonnegative bounded function
on [0,0c| satisfying

sup o(t)'" < ko (ot) — ot + 1))
1<s<tl

forr >0 and kg > 0. Then

o) <C(L+t)"r, forall t>0

where C' > 0 1s a positive constant depending on o(0) and other known
constans.
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3. THE MAIN RESULT

Theorem 3.1. Let g: R — R be a non-decreasing continous function
such that

g(0) =0 (3.1)
§(s)>1>0 (3.2)
lg(s)] < Cols|? (3.3)

Cy and T are two positive constans and ¢ > 1 is such that (N = 2)q <
N+ 2.
The function a satisfies

a € Whe(Q) (3.4)

a(r) > a9y >0, VreQ (3.9)

Let ug € H} () N H(Q) with ug(x) # 0, Vr € Q and uy; € HI(Q)N
L*1(QY), then exist €y > O with the following property:
For each {ug,u,} satisfying

7 2 ;
2 (% + |An.0|2) < € (3.6)

then exists only one solution u : Q2x0,T[— R such that

ue L®(0.T;: H) N H?) (3.7)
o€ L= (0, T HY) (3.8)
W' e L (0, T; L?) (3.9)
L (r). ) — [Vl P2, 0) + (a(m)glal).w) =0, (3.10)

Yw e HY(Q), in the sense of D'(0,T)
w(0) = ug.  w'(0) =y (3.11)
|Vu(t)] > 0. Vitel0+,oc] (3.12)

Proof. We will use the Faedo-Galerkin method’s.
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We consider {w;};en an orthonormal basis of H}(2) N H?(Q2) and
denote by Vi, = [wy,... ,w,,] the subspace of Hj(2) N H?(Q) spanned
by the first vectors of {w;}en.

We seek u,,(f) in the form

Uy (1 Z Gim (P)u

such that, for all w in V,,, un(t) satlsﬁes the approximate equation

(um()yw) = (M7 + [ Vun(t)]?) (Dt (), w)
+ (a(r)g(u, (1)), w) =0 (3.13)

with the following initial conditions

U (0) = ugm — up in HY(Q)N Hz(‘Q) (3.14)

ul, (0) = uym — uy in HY(Q) N L2(Q) (3.15)

Using (3.3) we deduce from (3.25) that (g(uy,)) is bounded in L?(€2).

Under these conditions, the system (3.13) - (3.15) has a local solution
um(t) over the interval [0, T,,[. We shall see that wu,,(t) can be extended
for all + > 0.
A priori Estimative I

For w = 2u/,(t) in (3.13) we find

d

= 2, L 1
2 {0 7 T + P01} +

+2 / a(z)g(u,, (1)), (t)dr =0
Q

Integrate in [0,%], t < Ty, to obtain

|’“'Im(f-)‘2 —IVum 4 + 2// Jul drds <
< w2 4 |V + IVU,0|4 (3.16)

It follows that
lur, ()] < k

(3.17)
[Vum(t)] < k



E. Cabanillas, J. Bernui & Z. Huaringa 43

Then we extend the approximate solution u,,(t) to the interval [0, T'[
for any 0 < T < o0.

From now on we denote by C' various constants independent of m
and t in [0, 7.
Also it follows from (3.16), (3.3) and (3.5) that

/ / W dadt < C (3.18)
/' / gl )| dzdt < C (3.19)
JO JQ

A priori Estimative 11
Putting w = —2Awu/, () in (3.13) we have

{Wu B2+ (M7 + [V (t)?) |Aun(t)*} +

o , d )
+2(V(ala)a(ui)), Vi) = ( GITun(OF ) 1Bn0)
Let us define

[V, (t) |:2
m=1 + |Vun,(1)|?

A simple computation shows that

Fnlt) = + | Aum ()2 = frn(t) + | At (t)]?

; _ —2(a(x)Vg(up), Vuy,) = (g(u,)Va(z), Vug,)
Falt) = m~ + |Vun(t)]?
2(Vum(t), Vug, (1) [V, (1)

— ; (3.20)
(m=1 + |Vun(1)[?)
But:
(aVg(w), Vu') = (ag' (v )Vu', V') > Tag| V' |? (3.21)
and using (3.3), the Sobolev embedding and (3.4) give
|(g(v)Va, Vu')| < C’gng|a|}’oo|Vu'|qH (3.22)

From (3.22), (3.21), in (3.20) we get
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'y Il V! |9+
ml ) = TCLOm 1, lvumP + QCOCquah‘ o g ‘Vum|2
Ve 1 o
2.
=+ {'rn‘l _|_ [vu lg (3 '3}
That is:
Flt) < 2 [ 13200 + 6afn = 6] fl) (3.24)
where &g = CoCoglalt,eo(1 + k);u, 0 ==y,

Integrating (3.24) from 0 to ¢ we have

Fult) <2 [ (£3/2(5) + ufof (5) = 6) fm(s)ds + Fn(0) (325

Now, since F,,(0) — F(0). it follows of (3.6) that

Fm(O) < €p (326)
for sufficiently large m.
We shall prove that
. =1 )
FY2(8) 4 Sofm® (1) < 5 vte (0,00 (3.27)

IO ERG
for g = min { (4) ; (4:%) } In fact

; 4
fP20) < F20) < & < 4

Sofaf (0) < 6oFu? (0) < Goes® <

and thus we have

| On

] 6
12(0) + bofm? (0) < 5
Suppose, then, that (3.27) does not hold for all > 0.

Because of the continuity of f,(t), there is t* > 0 such that

F24) 4 50f,i"5"1(t) < g for O<t<t® (3.28)
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)
() + Sofm® ( )= 3 (3.29)
(3.25), (3.26) and (3.28) gives:
Fo(t*) < Fir(0) < ¢
This inequality yields
FY2(E) + Sofml (1) <
a contradiction to (3.19). Hence (3.27) is true.
From (3.25) and (3.17) we obtain
|Vu! (s)]?
ds <
1+ [ e e <
wich implies
|Vum(t)| < C ) (3.30)
|V, (1)]° -
<G ol
m=1 + |Vu, ()2 ~ ¢ eial)
t 1Tt ()12
[Vt (s)] g
= ds < (C 3.32
|, T < 232

A priori Estimative II1
Taking w = u/ (t) in (3.13) and choosing ¢t = 0 we get

1
O < (3 + D) 1 2tom] + )
hence u” (0) is bounded in L*(Q2). Next, by differentiation of (3.13)
and putting w = 2u (t) we find

%{l"uﬁl(f)lr" + (M7 [Vum() ) [V, )|2‘}+2]Qa,(m)g'(u;n)(ug,)dy

2 (T, Vi) [Vl ()2 + 4 (Vi Vi) / i
Q

< V|| VUL P + 4|V || V! ||Jul || Aum| < C+ Clul, (1)

where we have used the priori estimatives I and II.
Integrating from 0 a ¢ we have, using the Gronwall’s Inequality:
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()] < C (3.33)

Passage to the limit.
The proof is essentially included in [8]. For completeness however we
shall see the convergence of dissipative term. By applying the Dunford-
Pettis and Banach-Bourbaki theorems we conclude from (3.17) - (3.19).

(3.30) - (3.32) and (3.33), replacing the sequence u,, with a subsequence
if needed, that

U — U weak-star in L*°(0,T; Hy N H?) (3.34)
u,, — u weak-star in L*(0,T; H}) (3:35)
ur —u’ weak-star in L>=(0,T; L?) (3.36)
A almost every where in @ _ (3.37)
g(ul,) — x weak in L%(Q) ‘ (3.38)

iVumPAum — 1) weak-star in  L*=(0,T; %

We have to show that u is a solution of (P). We shall prove only that

/ a(x)g( wdrdfw»/ (u")vdrdt (3.39)

for all v € L% (0, T; Hy ().

In fact, from (3.18) and Fatou’s Lemma u'g(u') € L'(@). This vield
g(u') € L'Y(Q). On the other hand (3.37) and the continuity of g we
deduce that

4

g(uy,) — g(u') ae inQ
Let F C @ and set

Ei={(r.t) € E: g(u,(z.t)) < |E|"?}; Ex=E - E

when |E| is the measure of E.
If h(r) = inf{|z| : * € R and |g(z)| > 7} then we have

[ latutidzar < B2+ OB [ gt e
JE J Ea

Applying (3.18) we have that
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snp] lg(ul, (z,t))|dzdt — 0 when |E|— 0.
E

meN

From Vitali’s convergence theorem we get

g(up,) — gv’) in  LYQ)
Hence we have

T
J£ jﬁa(m)w(u;)g@ﬂndmdtf;|ahﬂﬁg<u;>ﬁwgurnLqQ>ﬂﬂf>

as m — oo.
So we get that

o(z)g(t) = al@)g(w) in L'(Q)
and from (3.38) 5

!

a(z)g(u,,) — a(r)g(u’)  weak-star in L%(Q)
this implies (3.39).
We now prove that |Vu(t)| > 0 for all ¢+ > 0. We need the following
lemma
Lemma. [fv: [-T,T) — HL(Q) N H*(Q) is a weak solution of

() — V() PAv(t) + a(z)g( (1) =0, ~T <t<T

then v(t) =0, for t € [T, T).
Proof. Multiplying with 2v/(#) we have

d |
— {|'H'(t)|2 + ~[V?.?(t)l4} - 2/ a(x)g(v'(t))v'()dr =0
dt 2 0

and integrating in [0, ], using (3.2), gives

1 i
[v'(1)|? + §|V?J(z‘,)|4 < 20,0|T|/ |v'(s)|2ds
0

Gronwall’s Lemma assures v'(t) = 0 and v(t) = 0 for all t € [-T.T].
This concludes the proof of this lemma. &
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We now turn to the proof of |Vu(t)| > 0, V¢ > 0. Suppose that
there exists a number 7' > 0 such that Vu(T') = 0. Since the a priori
|Vu'(T)|

estimatives imply that
[Vu(T)|

is bounded, then

VW (T)| < C|Vu(T)| = 0.

Hence, the above lemma implies that u(t) = 0, for 0 < < T. wich
contradicts ug(r) # 0.
The uniqueness is a consequence of the monotonicity of g and Gron-

wall’s Inequality. We shall omit the proof. Since it can be obtained in
a standard way:.

Theorem 3.2. (Energy Decay) In addition to (3.1) - (5.3), assume
that

g(s) < Cyls| if|s| <1 (3.40)
then the total energy

E(t) = [ (1) + 5] Va0

satisfies

Yy
E(t) < Ak

where Cy and Cy are positive constants.

forall t >0

Proof. Taking the scalar product of the first equation of (P) with 2u’
and integrating over 2 we obtain

E'(t) + 2/ a(r)u'g(u)dr =0 (3.41)
- 0
Integrating (3.41) over [t,f 4+ 1] we get

t41
2/ ) / a(z)u'g(v')drds = E(t) — E(t + 1) = D(t)?
f JQ '

From this we obtain

/H—] |u/(s)|ds < CD(t)? (3.43)
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: ; 1
By the Mean Value theorem there exist two points t; € |, + 1

3
and 5 € [t + 7 t+ .1} such that

[w'(t:)]? < CD(t)?, i=1,2 (3.44)

thus, multiplying of the first equation in (P) by u and integrating it
over £2x |t1,1q[, we have from (3.42) - (3.44) and Lemma 2.1

f: C|Va(s)ds = / ()Pl — (o (t1), () + (2 (t2), u(t2))

1 ty

- [ tat)gtu) wyds
< C(D(t)?+ D(H)E(t)*) = At)? (3.45)

-

From (3.43) and (3.45) we conclude that

Elt) < / ? B(s)ds < CA(t)?

Tyt

there fore, we obtain

E(t) = E(ty) +2f / (u')u'dzds
< CA(t) < C{D(t)* + D(t)E(t)"/*}

Using Young’s inequality, noting that D(t)? < E(t) < E(0) we get
sup E(s)*? <CD(t)* = C(E(t) — E(t+ 1))
t<s<t+1
Hence, lemma 2.2 gives

Ef)<Cl+tH)72 Vt>0

this ends the proof of theorem. ]
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