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ABSTRACT. In this papel', we consider the null controllability problem [01' thc
semili11eal' heat equation in an unbounded domain í1 o[IRN with Diriciilet. boundary

conditions. Tlie control ís assumed to be distributed along a subdomain w sucii
that the uncontrolled regian .í1\w ís bounded. Using Ctulemen inequalitics wo first
prove the null controtlebitity oi the lineal'ized equatian. Tlieu, by a fixed point
nictbod, we obtain the main result [01' tbe semilineei case. This iesult asserts that,
when the nonlinearity is globally Lipschitz, tlie system is nu11 controllable.

Key words: null controllability, unbounded domain, approximate controllability,
Carleman inequalities.

1. INTRODUCTION AND MAIN RESULTS

This paper is devoted to the study of the null controllability of the semilinear heat
equation

{

Ut-b..U+f(U)=h1W in Dx(O,T)

(1.1) u = O on ¿: = 8D x (O, T)
u(x, O) = uo(x) in D

where D is an open and unbounded set of ]RN of class C2 uniformly, witli bouudarv, .
8D (see Section 2 for a precise definition) and w is an open and nonempty subset uf
D. In (1.1) u = u(x,t) is the state, h = h(x, t) is the control function and 1", denotes
the characteristic function of the subset w.
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Therefore, the control h acts on the system thorough the subset w. We shall assume
that f is a real and globally Lipschitz function such that f(O) = O.

\Ve also aSSUIll(' that the unbounclecl sets n ancl w satisfy that

( 1.2) n\w is bounded.

According to this, the control acts on a large subset of O ancl only leaves a bouncled
subset of O without control. Therefore, the problem we are addressing is close to tlie
classical one of controlling to zero the heat equation in bounclecl clomains. We shall
describe below the state of the art on this topic.

Let 1/,0 E L2(0), h E U(O, 1', L2(0)), T > O aud f globally Lipschitz function
such that f(O) = O. Then there exists a unique solution

of problem (1.1).

Tlie null controllability problem for (1.1) can be forrnulated as follows: Given
T > O and Uo E L2(n) to jitui a control h E L2(0, 1', L2(0)) such tliat the soluiion of
(1.1) satisfies

(1.3) '11(1') = O in O

unili an estirnate of the forrn

Note that, in view of the condition f(O) = O, u == O is an equilibrium solution of
system (1.1) in the absence of control, i.e., with h == O. Thus, in the null controllability
problern uncler consideration, we intencl to clrive the solution to the equilibrium in
time 1'. Of course, if (1.3) is achievecl, extending the control by zero for all t ~ T we
obtain a globally definecl solution of (1.1) such that u(t) == O for all t ~ 1'.

There is a large literature on the null controllability of heat equations in bounclecl
domains. Let us brieflymention some of the existing works.

In the context of linear heat equations with time independent coeffic:ients D.1.
Russel [14] provecl that the null controllabilityof tho heat equation for al! T > O is
a consequence of the exact control!ability of the wave equation for somc 1'. More
rccently, G. Lebcau <lile!1. Robbiano [9] proved the null controllability without Cllly
g(~Ollwtri(' rcstricr ious Oll the OP(~1l subset tu where the control ClCtSusing Fourier
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series and sharp estimates on the eigenfunctions of the Laplacian obtained by means
of Carlemari's inequalities. Similar results but in a more general context induding
time-dependent coefficients were prove by A. Fursikov and O. Yu. Imanuvilov [7] using
global Carleman's inequalities for the heat equation. In [7] local null-controllability
resulta were also proved for semilinear heat equations (see also [8]). More recently,
the connections between null and approximate controllability were investigated in [5].
In [6] the null controllability of (1.1) was proved for a class of non-linearities for which
blow-up phenomena may arise.

There is a large literature on the so-called approximate controllability problem as
well. System (1.1) is said to be approximately controllable in time T if the reacli-
able set {u(· ,T); with h E U(0,T,L2(D))} is dense in L2(D) for any initial datuni
uo E L2 (D). In [3] the approximate controllability was proved to hold in bounded
domains with globally Lipschitz non-linearities. This result was extended to the case
of unbounded domains in [15]. However the properly of null-controllability is much
stronger and very little is known when the dornain D is unbounded.

Recently, in [13] the one-dimensional linear heat equation was considered in D =
lR+ = (0,00) with control at the extreme x > O. It was proved that, within the class
of solutions defined by transposition, there is no srnooth, cornpactly supported initial
data that might be driven to zero in finite time.

This result shows how differently the null controllability property behaves in boun-
ded and unbounded domains. Note that, as indicated above, approximate control-
lability does hold even in unbounded domains due to infinite speed of propagation.
I3ut null controllabilitynotl

Analyzing the proof of [13] it becomes olear that such a negative result holds sincc
we are controlling the heat equation in an unbounded domain by rneans of a control
localized in a bounded domain.

Thus, we leave an unbounded regio n without control and this is the cause of the
lack of null controllability. However, in this paper, even if the domain D is unbounded,
the control acts on a large subdomain that only leaves a bounded subset uncontrolled.
It is then natural to expect the positive results of the case where n is bounded to
hold. We refer to the bibliography for a more complete list of references.

The main result of the paper is the following:

Theorem 1. Assume that f is a el and globally Lipschitz [unction, such that
f(O, O) = 0, and let D be an unbounded domain of class C2 unijormh), and 'W tui
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open nonempty subset Of D sucli that 0.\ UJ is bouuded. Then. [or al! T > O atul [or
cvcry 1/,0 E U(0.). ihere exists h E U(O,T, L 2 (0.)) such. that the soluiion of (l.1)
satisfice (l.3). Moreooer, (l.4) holtls [or a suitable c > 0, indeperulent oju¿ .

In other words, systein (l.1) is null controllable for a11T > O.

Several rernarks are in order:

(i) Combining tlie methods of this papel' with those developed in [5], [6] the
fo11owing additional result may be proved under the assumptions of Theorem
l.1:

• Let v be any solution of systeru (l.1) corresponding to initial data VD E
L2(o.) and a control 9 E L2(0. X (O, T)). Then, the solutions of (l.1) may
be driven to the final state v(T), i.e. for any Uo E U(o.) there exists a
control such that the .solution 01' (1.1) satisfies u(T) = v(T).·

• Systern (l.1) is approximately controllable in any time T > O. More
precisely, for any 11,0,11,\ E L2(o.) and E > O there exists a control h E
U(o. x (O, T)) such that the solution of (l.1) satisfies

Ilu(T) -ulIIU(í1) < E.

• System (l.1) is finite-approxiniately controllable. In other words, given
any finite-dirnensional subspace E of U(o.) and denoting by KE the 01'-

thogonal projection over E, for any uo, Ul E L2(o.) and E > O there exists
a control ti « L2(0 X (O, T)) such that the solution of (l.1) satisfies

{
KE(U(T)) = KE(Ul);
Ilu(T) - u¡IIU(í1) ::; E. O

(ii) One rnay expect the same result to be true when f depends both u and \lu
in a globally Lipschitz way. In the case of a bounded domain this result was
preved in [8]. We refer to section 4 for a more detailled discussion of this issue.

The papel' is organized as follows: Section 2 is devoted to prove the nu11 control-
labili ty of the linearized system. In Section3 we prove Theorem 1.1 by a fixecl point
method. Finally in Section 4 we discuss some possible extensions of the results and
methods of this paper.

Acknowledgements: This work is part of t he PhD thesis of t.hc first author devel-
oped partly in Universidad Complutcnse de Madrid with the support of the ALFA
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project "Auieriquo Latine Formation Académique" of the EU. The authors acknow-
ledge the coordinator of this project O. Kavian for this support.

2. ANALYSIS OF THE LINEARIZED SYSTEM

For the sake of completeness, first of all, we recall the definition of domain of class
es uniforrnly. We say that a domain (bounded or not) is uniforrnly regular of cla....,s
es (s 2:: 1) (see [1]), if there exists an integer T > o anda sequence {Nj} of open
subsets of]RN and horneomorphisms {1/)j} frorn N, to the unit ball in ]RN such that:

i) Any (1" + 1) distincts sets N, have eiupty intersection;

ii) 1/)j(Nj n D) = {.1:: Ixl < 1, x.; > O}, ¡jJj(Nj n 3D) = {:E: Ixl < 1,Xn = O};
iii) If Nj = 1/);1 (Ixl < 1/2), n Nj contains the (lj1-)-neighborhood of 3D;

i
iv) For y E s., x E ¡jJj(Nj) we have I(D<>¡jJj)(y)1 < T, I (D"'tPt)(x)1 < 1', for al!
Inl :::::s.

To begin with let us consider the following initial-boundary value problem for th-
linear heat operator

(2.1 )
{

u¿ - b:.u+ au = h1w in D x (O, T)
'l.L = O on E = 3D X (O, T)
u(,1:, O) = uo(.1;) in D

where tlie potential a = a( x, t) is assumed to be in L 00 (D x (O,T)).

The followiug holds:

Theorem 2.1. Ass'U1ne that the hypotheses above oti D, w and a are satisjied. Tlien,
[or eoers] 'Lío E U(D), there exists h E U(O, T, L2(D)) sucli that the solution of (2.1)
saiisjies (1.3). Moreouer, ihere exists a constan: e > O independe of 'Lío sucli that
(1.4) holds.

Proof of Theorem 2.1. We proceed in several steps.

Step 1. Observability.
Let l1S cousider the adjoint system
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{

- ip¡ - D.<.p + tup = ° in D x (O,T)

(2.2) .p = ° on ¿ = 8D x (O,T)
..p(T) = <.po in D

Thc followiug obscrvability property holds:

Proposition 2.1. For al[ T > ° atul R > ° ihere exists a positiue constoni C sucli
thrd

(2.3)

[or euers} soluiion of (2.2) osul [or any a E LOO(WC x (O, T)) satisfying

f07· eVe1"y solutiou of (2.2).

Remark 2.1. The constant C depends on D, w, the time T and the size of the
poteutial, but it is indepeudent of the solution <.p of (2.2).

In order for (2.3) to be true the fact that Dlw is bounded is essential. Thus, in-
equality (2.3) is a natural extension of the existly observability inequalities in bounded
domains ([5], [7], [8],... ).

Note that in (2.3) we get an upper bound on the norm of <.p at time t = 0, which
is the final time for the adjoint system (2.2). Due to the regularizing effect of the
heat equation oue can not expect to get such a bound when 11<.p(O)11L2 (O) is replaced
by 11<.p(T)IIL2(n). O

Proof of Proposition 2.1: In order to prove (2.3) we introduce a "cut off" function
p, E COO(D) 811Ch that

(2.4)
{

Pl 2': ° in D
Pl = ° on w[ = {x E w: d(x, 8w) > c}
(),= 1 in O\w

We define

(2.5) e = Pl <.p.

Then e satisfies

{

-el - t:.e = -2\1 sp . \l p¡ - D.p¡ <.p - ap¡ ip in

(2.6) e = ° on De x (O, T)
8(T) = <.pop¡ in e

e x (O, T)
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where
e = {X E D: Pl (X) > O}.

Note that, according to the hypotheses above on D and w, 8 is a bounded open
seto We now apply global Carleman inequalities in (2.6). Following [6J or [7J, we
introduce a function r¡o = r¡o (x) such that

{

r¡o E C2(8) .

(2.8) r¡o > O in 8'-.2° = O on oe
\1r¡o =1= O in 8\w

We refer to [6] for the proof of the existence of a function satisfying (2.8). Let
«; > O be such that Ko ~ 5 m:x r¡o - 6 mjn r¡o and set

(f1 = r¡o + Ko, 7J = ~ mf<(f1, p1(x) = e>.73->.~

where A is a sufficiently large positive constant that only depends on 8 and w and
that will be fixed later on. Notice that pl > O in 8. We also introduce

pl(X) [ pl(X)] .
rjJ(x, t) = [t(T _ t)] , p(x, t) = exp [t(T _ t)] = exp(rjJ(x,t))

and the space

Z = {q E C2(8 x (O,T)): q = O on ~ = 08 x (O,T)}.

The following Global Carleman Inequality holds (see for instance [5]):

Proposition 2.2. There exist positive constants C., SI > O such that

~ ({ p-2St(T - t)(lqlI2 + l.6.qI2) dxdt +
s J JeX(O,T)

+ S ({ p-2SC1(T - ttl l\1ql2 dxdt +
J J ex(O,T)

(2.9) + S2 ({ p-2sC3(T - tt31ql2 dxdt :s
JJex(O,T)

:s C.[¡r ( p-2Slotq + .6.q12dxdt +
JeX(O,T)

+ 83 ({ p-2sC3(T _ t)-3IqI2 dXdt]
J JwX(O,T)

for oll q E Z and s ~ SI' Moreover, C. depends only on 8 and w and SI is of the
f01m

(2.10) 81=0"1(8,w)(T+T2
)
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where o1(e,w) is a positive constant that only depends on e and w. o
Let us now complete the proof of the observability inequality (2.3). Let r.poE L2(n)

be given. By density, we can write (2.9) for q = e, with e being the solution of the
system (2.6). Taking into accountthat et+D.e = 2Vr.p· VPl +D.Plr.p+aplr.p, it follows
that 8¡~r p-2sr1(T - t)l dxdt +

Jex(O,T)

i ¡rr p-2sr3(T _ tt31el2 dxdt <
JeX(O,T)

< e, [¡r r p-2sI2Vr.p. V Pl + D.Pl ip + ap, r.p12dxdt +
JeX(O,T)

+ i¡~r p-2s r31el2 dXdt] :::;
JwX(O,T)

:::;e, [4 ¡rr ¡Vr.p. V Pll2 p-2s dxdt + 4 ¡rr ~ IVr.p· vPID.Plr.pldxdt+
JeX(O,T) JeX(O,T)

+ 4 ¡rr p-2sIVr.p. VPlaplr.pldxdt + ¡~r p-2slD.Plr.p12dxdt+
JeX(O,T) Jex(O,T)

+ 2 ¡r r p-2slD.Plr.paplldxdt +¡~r p-2slaplr.p12dxdt+
JeX(O,T) JeX(O,T)

+ i ¡rr p-2Sr3(T - tt3lplr.p12 dXdt] :::;
JwX(O,T)

< C* [coT6 ¡rr p-2sr3(T _ T)-3IVr.p12dxdt+
JwX(O,T)

+ eaT6 ¡rr p-2sr3(T _ tt31r.p12dxdt+
JwX(O,T)

+ cOT6 ¡rr p-2sr3(T _ tt3lel2dxdt+
JeX(O,T)

+ ea83 ¡er p-2sr3(T _ tt31r.p12dxdt]
JwX(O,T)

where ea depends on the norm of Pl in Loo(O, T, W2,oo(n)) and laILOO([íl\w]X(O,T)).

Let 8 2 82 = max{Sl,c~/3T2}. We have

(2.11)
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r r p2s rl (T - t)-l IY"O!2 dxdt ::;
JJex(O,T)

(2.12) ::; c*(Co + 1)S2 [ r r p-2s r3(T - t)-3!Y"cp!2 dxdt +
JJWX(Q,T)

+ r r p2s C3(T _ t)-31Cf'12 dXdt]
JJWX(O,T)

for all s ~ S2 .
Let us estimate the weights appearing in (2.12):

Lernrna 2.1. One has
(2.13) Ip-2sr3(T - t)-3!oo ::; 26T-6 exp( -csT-2)
for al!

s ~ S3 = max {S2' 3T2(8 mjnpl(x))-l}.
e

Proof of Lernrna 2.1: We observe that

(2.14) p(x tt2s t-3(T _ tt3 = _1_
, fx(t)

for any x E e, t E (O, T) with

fx(t) = t3(T - t)-3 exp C~S;~X))) = r3 exp (2SP~(X)) = 9x(r)

and r = t(T - t) E [O, T2/4J.

The minimum of 9x is achieved at f = ~ spl(X) and 9x(f) = (~SPl(X)) 3 e3. On

the other hand, 9x(0) = 00 and 9x is decreasing for r E (O, f) and increasing for
T > f. Thus,

(2.15) {
(2)3 2

= 9x(f) = 3 Spl(X) e3 if T2 /4 ~ 3 Spl(X)

T2 2
9x(T2/4) = 2-6r¡i5 exp(8spl(x)T-2) if 4" < '38p1(X).

Therefore, if 8 ~ 83 as in (2.13), we have
(2.16) min fx(t) ~ 2-6T6 exp(csT-2) with c = 8mjnpl(x).

O~t~T e
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In view of (2.14) and (2.16), (2.13) holds. o

Remark 2.2. In view of (2.10) and (2.13), we have

(2.17) 83 :::; 84 = e(T + (1 + ea)T2).
Applying (2.13) with 8 as in the right hand side of (2.17), we deduce that

(2.18) Ip-2s r3(T - tt31_oo :::;26T-6 exp ( - e( 1+ ea + ~) ). O

Lemma 2.2. One has
16(2.19) p-2sr1(T_t)-1 ~ 3T-2 exp(-e8T-2)

[ot: all x E e and t E [T /4, 3T /4], whenever 8 ~ 84.

Proof of Lemma 2.2: We have

p(x, t)-2s rl(T _ t)-l == _1_
hx(t}

with

( 28p1(X)) (28p1(X))h.~(t) = t(T - t) exp t(T _ t) = T exp T = jx(T)

and T = t(T - t) E [O,T2/4].

When t E [T /4, 3T /4]' one has T E [3~2, :2] .
Proceeding as in the proof of Lemma 2.1, we deduce that

3
max hx(t):::; - T2 exp(e8T-2),

T/45.t9T/4 16

provided 8 ~ T2 (8min pl (x) r1. In particular, this is the case if 8 ~ 84. Therefore
o

16
p-2s r1(T - t)-1 ~ 3T-2 exp( -c8T-2)

in e x [T/ 4, 3T /4] whenever 8 ~ 84. This concludes the proof. o
Remark 2.3. Arguing as in Remark 2.2, it follows that

(2.20) p-2sr1(T - tt1 ~ 13
6
T-2 exp ( - c( 1 + /~+ ca) ) in e x [T/4, 3T /4]

for 8 = 84. o
Corning back to (2.12) and using (2.18) and (2.20) we deduce
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(2.21) fr r IV'OI2dxdt:S el [¡"r (cp2+ IV'CPI2)dXdt]
JeX(T/4,3T/4) JwX(O,T) .

where CI = exp (e ( 1+ Co + ~) ).
Let Al be the first eigenvalue of -~ in HJ(O). In view of (2.21), O = Pl'P and also

according to the choice of Pl , we deduce that

(2.22) r r 'P2 dxdt :S C2 [ r r ('P2 + 1V''P12)dXdt].
J JOX(T/4,3T/4) J J

Multiplying in (2.22) by cp and integrating in n, we deduce that

(2.23) - ~!Icpl2+ 10 lV'cpl2 dx + 10 acp2dx = O.

Integrating this equality in [O,t] for any t E [O,T], we find

(2.24) 1 cp(0)2 dx :S c31'P2(t) dx. V t E [O, T].

It follows that

(2.25) r cp(0)2 dx :S C3 ~ ¡rr ,i dx.Jo JOX(T/4,3T/4)

In view of (2.25) and (2.22), we deduce that

(2.26) Icp(0)112(n) .::::C4 [ir r (cp2+ IV'CPI2)dXdt].
JwX(O,T)

Let K an compact subset of O and Ó > O, Proceeding as in the proof of (2.26), we
have

(2.27) Icp(0)112(o) :S C4 [f" r (cp2+ 1V''P12)dXdt]
J(O,T-O)XK

By using regularity theory for the heat equation one obtains, from (2.27), that .

(2.28) Icp(0)112(o) :S C ¡T L cp2dxdt

which is the observability inequality (2.3).
In fact, one has the following result:

Lemma 2.3. Let A be a bounded open regular subset 01 lJ.{N. /11/J E L2(O, T, L2(A))
is a solution 01

(2.29)
{

7jJt - ~7jJ + a7jJ = O in A x (O, T)
7jJ = O on eA x (O, T)
7jJ(x, O) = 7jJO(x) in A
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ihen \1'l/J E Lfoc(A x (O,T)).

Proof of Lernrna 2.3: Given o >. O and a compact set K e A let us define
~ = 'ljJ(x, t)c(t)17(x), where

• s is a regular function, e = 1 in (o, T - o) and s(O) = s(T) = O.
• i • 17 isa regular function, 17= O on the boundary aA of A, 17= 1 in K.
Then ~ satisfies

{

~t - ~~ + a~ '=St'I/J17 - 2s\1'I/J . \117 - s'I/J~17

(2.30) ~ = O on aA x (O, T)
~(O) = O

in A x (O, T)

Thus, by using energy estimates, one has

1\1~IL2(Ax(O,T)) ::; CIEt'I/J17 - 2E\1'I/J . \117 - E'I/J~17IL2(O,T,H-l(A))

where e = c(a).
Furthermore, we remark that

~
ISt'I/J17 - 2E\1'I/J· \117 - s'I/J~17I_L2(0, T, H-1(A)) ::; cl'I/JIL2(O,T,L2(A))

and in view of \1~= \1'I/J in K x (o, T - o) we get

I\1'I/J IL2(8,T-8,L2 (K)) ::; cl'I/JIL2(O,T,L2(A)) O

In view this, we deduce that

{ 1\7~12dxdt ::; e (T J ~2 dxdt.
l(8,T-J)XK lo w

Thus, (2.28) holds.

Step 2. Approximate controllability.
In view of the uniform observability inequality (2.3) the null controllability result

of Theorem- 1.1 can be proved as the limit of an approximate controllability property.
Let us first discuss the approximate controllability.
Given Uo E L2(0,) and o > Owe introduce the quadratic functional

(2.31) J8(~O) = ~ (T1~2 dxdt + ol~OIL2(O) + (uo ~(O) ds:
2 ~ w lo

where ~ denotes the solution of (2.2) with initial data ~o. The functional Jíj is
continuous and convex in L2(0,). Moreover, .l¿:, is coercive. More precisely, in view of
(2.3), one has

(2.32)
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Then J" has a unique minimizer in L2(0). Let us denote it by 0°'''. It is easy see
that the control h" = 0", where 0" is the solution of (2.2) associated to the minimizer
0°''', is such that the solution of (2.1) satisfies of J"
. (2.33) lu,,(T)IL2(n) ::;6.

We refer to [3] for the details of the proof. In order to get a uniform bound on the
control we observe that, by (2.3),

J,,(cpO) ~ ~1Ti cp2 dxdt -

[

T ] 1/2
-e 11cp2dxdt luoIL2(n)

(2.34)

with e> ° independent of 6. On the other hand,

(2.35) J,,(0°''') ::; J,,(O) = O.
Combining (2.34) and(2.35) we deduce that

(2.36)

In other words, h"remains bounded in L2(0, T, L2(0)) as 6 -----t O.

Step 3. Null controllability.

Extracting subsequences we deduce that

(2.37) h" -->. h as 6 -----t ° weakly in . L2(0 x (O, T)),

for some h E L2(0 X (O, T)).
Itis easy to see that the limit h is such that the solution u of (2.1) satisfies (1.3).

Moreover, by lower semicontinuity of the norm with respect to the weak topology and
in view of (2.37) we deduce that:

(2.38) IhIL2(nx(0,T)) ::; liT1rf Ih"IL2(nx(O,T)) ::; ~ luolL2(n) .

This concludes the proof of Theorem 2.1. D

3. Proof of the main result

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1: First of all note that system (1.1) can be written as follows:

{

ú, - tlu + (1 - 1w)f(u) = h1w - f(u)lw in O x (O, T)
(3.1) u = ° on 80 x (O,T)

u(x, O) = uo(x) in O
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Therefore it is sufficient to analyze the controllability of the system:

{

u¡ - ~u+ (1 - 1w)f(u) = q(x, t)lw in D x (O,T)
(3.2) u = O on 8D x (O,T)

u(x, O) = uo(x) in D
Indeed, if q is the control for (3.2), h' = f (u) + q is the control for (1.1) and vice-

versa. The advantage of writing system (1.1) in the form (3.2) is that the nonlinearity
is now localized in a bounded subdomain of D, according to property (1.2), and this
is important to guarantee the compactness properties that are needed to apply the
fixed point argumento

We introduce the non-linearity

(3.3) {

f(8)
g(8) = 8'

1'(0),

if 8 =1- O

if 8 = O.

Note that g is a uniformly bounded function with Igloo ::; 11'100'
Given any v E L2([D\w] x (O, T)) we consider the "linearized" system:

{

Ut - ~u + l¡íl\w] g(v) = q1w in D x (O, T)
(3.4) u = O on 8D x (O,T)

u(x, O) = uo(x) in D
where nlw denotes the complement of w in D and 1[íllw] its characteristic function.

Observe that (3.4) is a linear system on the state u with potential a = g(v) E
DXl([D\w] x (O, T)) satisfying the following bound '

(3.5) laILCXl([íl\w]X(O,T)) ::; If'ILCXl(IR) .

With this notation system (3.4) may be rewritten in the form

{

Ut - ~u + l¡íl\.w] au = q i, in D x (O, T)
(3.6) u = O on 8D x (O, T)

u(x, O) = uo(x) in D

As we saw in section 2,8> O being fixed, for any v E L2(O, T, L2(D\w)) this allows
us to define a control qó= qó(x, t, v) E L2(O, T, L2(D)) such that the solution Uc5 of
(3.6) satisfies

(3.7) IUc5(T)IL2(íl) ::; O.

Moreover, for every R > O and potential satisfying laluX>(¡íl\w]X(O,T)) ::; R, we have:

(3.8) Iqc5IL2(O,T,L2(íl)) ::; cluolL2(íl) .

Therefore, the controls qc5 are uniformly bounded in L2(W x (O, T)).
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This allows to build a nonlinear mapping

Thus, the approximate control problem for system (3.2) is reduced to find afixed
point for the map N. Indeed, if v E L2(0, T, L2(wc)) is such that N(v) = u, u
solution of (3.6) is actually solution of (3.2). Then, the control q/j = q/j(v) is the one
we were looking for since, by construction, U/j = u,,( v) satisfies (3.7).

As we shall see, the nonlinear map N satisfies the following two properties:
N is continuous and compact

{
the range of N is bounded, i.e., :3M > O:

IN(v)IL2(O,T,L2(O\w)) ~ M, Vv E L2(0, T, L2(0,\w))

In view of these two properties and as a consequence of Schauder's fixed point
Theorem, the existence of a fixed point of N follows irnmediately. We shall return
later to the proof of (3.9) and (3.10). By the moment let us assume that these
properties hold. Then, we have found a control q{¡ in ,&2(0,T, L2(w)) suc'h that the
solution U{¡ of

{

u~ - 6u{¡ + l[o\w] f(u{¡) = q{¡(x, t)lw in 0, x (O, T)
(3.11) u{¡ = O on 80, x (O,T)

u{¡(x, O) = uo(x) on 0,

(3.9)

(3.10)

satisfies
(3.12) u¿¡(T) = O in 0,

with an estimate of the form
(3.13)

Passing to the limit as Ó ---+ O, as in section 2, we deduce the existence of a lirnit
control q E L2(0, T, L2(0,)) such that the solution u of (3.2) satisfies (1.3) and (1.4).
Let us now return to the proof of (3.9) and (3.10).

Continuit of N. Assume that ": ---+ v in t2(0, T, L2(0,\W)). Then the potential
aj = g( Vj) is such that
(3.14) aj = g(Vj) ---+ a = g(v) in LP([0,\w] x (O,T))

for all 1 ~ p < 00 and

(3.15) lajlu"'([rl\w]x(ü,T)) ~ L,
with L the Lipschitz constant of f. According to Proposition 3.1 the corresponding
controls are uniformly bounded:
(3.16) IqjIL2(O.T,L2(O)) ~ e, V j 2: 1



50 NULL CONTROLLABILITY FOR THE SEMILINEAR ...

and, more precisely,

(3.17) qj = CPj III W X (O, T)

where CPj solves

{

- CPt - t::..cp + 1[O\w) g( Vj)cp = O in

(3.18) ip = O on 80 x (O, T)

cp(T) = CP~ in O

with the datum cp9 minimizing the corresponding functional in L2(0,). We also have

(3.19) Icp~IL2(n) S; c.

0, x (O, T)

By extracting subsequences we have

(3.20) CP~-" cpo weakly in L2(0)

and in view of (3.14)-(3.15), we deduce that

(3.21) CPj -" cP weakly in L2(O, T, HÓ(0,))
where cP solves

{

- CPt - t::..cp + l[o\w) g(v)cp = O in O x (O, T)
(3.22) cp = O on 80, x (O,T)

cp(T) = cpo in O

We also have that

(3.23)
and, once again, by Aubin-Lions compactness lemma, it follows that

(3.24) CPj -t cP strongly in L2(O, T, L2(0,\w)).
Consequently

(3.25) qj -t q in L2(O, T, L2(0\W))
where

(3.26) q = cP in W x (O, T).

It is then easy to see that

(3.27) Uj -t u in L2(O, T, L2(0,\w)),
where

{

u¿ - t::..u+ l[o\w) g(v)u = q i., in 0, x (O, T)
(3.28) u = O on 80, x (O, T)

u(x, O) = uo(x) . in 0,

and
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(3.29)

To conclude the continuity of N it is sufficient to check that thc lirnit 1.jJ0in (3.20) is
the minimizer of the function J associated to the limit control problern (3.28)-(3.29).
To do this, given '1/)0 E L2(0.) we have to show that

(3.30) J(I.jJ0) ::; J('I/)o).

But this is immediate since, by lower semicontinuity, we have

on one hand,

on the other one, and finally

I
since I.jJJ is the rninirnizer of Jj .

Compactness of N. The argurnents above show that when v líes in a bounded set
B of L2([0.Iw] x (O, T)), u = N(v) also lies in an bounded set of L2([0.Iw] x (O, T)).
We have to show that N(B) is relatively cornpact in U([0.lw] x (O, T)). But this can
be obtained easily by rneans of the regularizing effect of the heat equation. Indeed,
we have

{

Ut - !:lu = (3 in 0. x (O, T)
u = O on 80. x (O,T)
u(x, O) = uo(x) in 0.

with (3= q1w ~ 1[í/lw) g(v)u which is uniformly bounded in L2(0, T, L2(0.)). Then, by
classical regularity results on the heat equation we deduce that u is uniforrnly bounded
in L2(O, T, HJ(0.)) n H1(O, T, H-1(0.)). Therefore, as a consequence of Aubin-Lions
cornpactness lernrna, u lies in a relatively cornpact set of L2(0, T, U(0.\w)).

(3.31)

Boundedness of the range of N. According (3.13), there exists e > O such that
the control q = q( v) satisfies

Iq(v)IL2(O,T,L2(í/\w)) :s; c.

Classical energy estirnates for the systern (3.28)" show that

, lu(v)IL2(O,T,L2(í/\w)):S; e

as well, since the potential involved in it is uniforrnly bounded.
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This concludes the proof of Theorem 1.1.

4. Further comments

The results of this paper can be extended to more general equations of the form

{

u; -llu+au+div(Bu) = h1w in D x (O,T)
(4.1) u=O on 8Dx(O,T)

u(x, O) = uo(x) in D

where a E LCO(D x (O,T)) and B E (LCO(D X (O,T)))N. To do that, it is sufficient to
obtain appropriate observability for the adjoint system

{

- CPt - llcp + tup - B . \lcp = O in D x (O, T)
(4.2) cp= O on DD x (O, T)

This can be done following the methods developed in this paper with minor changes.
More precisely, arguing as in section 3, we find that

(4.3) Icp(0)11,2(n)< e ¡T1cp2dxdt

for any solution of (4.2) and for all a E LCO(w x (O, T)), BE (LCO(w x (O, T))N.
Moreover, the observability constant e in (4.3) remains bounded when the potentials

a and B lie in a bounded set of LOO(D x (O, T)) and (LOO(D x (O, T)))N respectively.
The situation is different when the state equation is of the form

{

u¿ - llu + B . \lu = O in D x (O, T)
(4.4) u = O on 8D x (O, T)

u(x, O) = uo(x) in D

Obviously, when B E (W1,OO(Dx (O,T)))N, system (4.4) can be written in the form
(4.1) and the methods of this paper apply. However, when B is only assumed to be
in (LOO(Dx (O, T)))N, the situation is much more delicate. Indeed, the adjoint system
takes the forrn

(4.5) {

- CPt -llcp - div(Bcp) = O in D x (O, T)

cp= O on DD x (O, T)
and, therefore, the global Carleman inequality of Proposition 2.2 cannot be applied
without further regularity assumptions on B. Roughly speaking, in order to address
system (4.5) we would need the H-1-version of the L2-Carleman inequality in Propo-
sition 2.2. This problem was recently solve by O. Yu. Imanuvilov and M. Yamamoto
[IY] in the case of a bounded domain. They proved the Carleman inequality for the
system (4.5), only supposing BE (LOO(Dx (O, T)))N. Then by a fixed point method
they proved null controllability for the semilinear heat equation
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{

UI - 6.a + f(x, t, a, Va) = h i;

7J, = O on 80 x (O,T)

a(x, O) = ao(x) in O

when O is an bounded set of ]RN, and f is globally Lipschitz.
The extensión of this result to the case where O is unbounded, O\w being bounded,

is an open problem.

III O X (O. T)
(4.6)
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