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NULL CONTROLLABILITY FOR THE SEMILINEAR HEAT
EQUATION IN UNBOUNDED DOMAINS
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ABSTRACT. In this paper, we consider the null controllability problem for the
semilinear heat equation in an unbounded domain @ of R with Dirichlet boundary
conditions. The control is assumed to be distributed along a subdomain w such
_that the uncontrolled region Q\w is bounded. Using Carleman inequalitics we first
prove the null controllability of the linearized equation. Then, by a fixed point
method, we obtain the main result for the semilinear case. This result asserts that,
when the nonlinearity is globally Lipschitz, the system is null controllable.

Key words: null controllability, unbounded domain, approximate controllability,
Carleman inequalities.

1. INTRODUCTION AND MAIN RESULTS

This paper is devoted to the study of the null controllability of the semilinear heat
equation

w — Au+ f(u) =hl, in Qx(0,7T)
(1.1) u=0 on T=080x(0,T)
u(,0)'=uglz) "in N

where Q is an open and unbounded set of RV of class C? uniformly, with boundary
9 (see Section 2 for a precise definition) and w is an open and nonempty subset of
Q. In (1.1) u = u(z,t) is the state, h = h(z,t) is the control function and 1,, denotes
the characteristic function of the subset w.
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Therefore, the control h acts on the system thorough the subset w. We shall assume
that f is a real and globally Lipschitz function such that f(0) = 0.
We also assume that the unbounded sets €2 and w satisfy that

(1.2) Mw is bounded.

According to this, the control acts on a large subset of €2 and only leaves a bounded
subset of {2 without control. Therefore, the problem we are addressing is close to the
classical one of controlling to zero the heat equation in bounded domains. We shall
describe below the state of the art on this topic.

Let ug € L3(Q), h € L%0,T,L%Q)), T > 0 and f globally Lipschitz function
such that f(0) = 0. Then there exists a unique solution

u € C([0,T), L*(Q)) N L*(0, T, H3(Q))
of problem (1.1).
The null controllability problem for (1.1) can be formulated as follows: Given
T >0 and uy € L*(Q) to find a control h € L?(0,T, L>(Q)) such that the solution of
(1.1)satisfies

(1.3) w(T)=0 in Q
with an estimate of the form

(14) |h|!.2(0.T.L2(§2)) < C[’Ug[[}(g) y for all Uy € L2(§2)

Note that, in view of the condition f(0) =0, u = 0 is an equilibrium solution of
system (1.1) in the absence of control, i.e., with & = 0. Thus, in the null controllability
problem under consideration, we intend to drive the solution to the equilibrium in
time 7. Of course, if (1.3) is achieved, extending the control by zero for all t > T we
obtain a globally defined solution of (1.1) such that u(t) =0 for all t > T

There is a large literature on the null controllability of heat equations in bounded
domains. Let us briefly mention some of the existing works.

In the context of linear heat equations with time independent coefficients D.L.
Russel [14] proved that the null controllability of the heat equation for all 7 > 0 is
a consequence of the exact controllability of the wave equation for some T. More
recently, G. Lebeau and L. Robbiano [9] proved the null controllability without any
geometric restrictions on the open subset w where the control acts using Fourier
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series and sharp estimates on the eigenfunctions of the Laplacian obtained by means
of Carleman’s inequalities. Similar results but in a more general context including
time-dependent coefficients were prove by A. Fursikov and O. Yu. Imanuvilov [7] using
global Carleman’s inequalities for the heat equation. In [7] local null-controllability
results were also proved for semilinear heat equations (see also [8]). More recently,
the connections between null and approximate controllability were investigated in [5].
In [6] the null controllability of (1.1) was proved for a class of non-linearities for which
blow-up phenomena may arise.

There is a large literature on the so-called approximate controllability problem as
well. System (1.1) is said to be approximately controllable in time 7T if the reach-
able set {u(-,T); with h € L*(0,T, L%(Q))} is dense in L?(2) for any initial datum
uyg € L3(2). In [3] the approximate controllability was proved to hold in bounded
domains with globally Lipschitz non-linearities. This result was extended to the case
of unbounded domains in [15]. However the properly of null-controllability is much
stronger and very little is known when the domain 2 is unbounded.

Recently, in [13] the one-dimensional linear heat equation was considered in 2 =
R, = (0,00) with control at the extreme z > 0. It was proved that, within the class
of solutions defined by transposition, there is no smooth, compactly supported initial
data that might be driven to zero in finite time.

This result shows how differently the null controllability property behaves in boun-
ded and unbounded domains. Note that, as indicated above, approximate control-
lability does hold even in unbounded domains due to infinite speed of propagation.
But null controllability not!

Analyzing the proof of [13] it becomes clear that such a negative result holds since
we are controlling the heat equation in an unbounded domain by means of a control
localized in a bounded domain.

Thus, we leave an unbounded region without control and this is the cause of the
lack of null controllability. However, in this paper, even if the domain €2 is unbounded,
the control acts on a large subdomain that only leaves a bounded subset uncontrolled.
It is then natural to expect the positive results of the case where €2 is bounded to
hold. We refer to the bibliography for a more complete list of references.

The main result of the paper is the following:

Theorem 1. Assume that f is a C' and globally Lipschitz function, such that
f(0,0) = 0, and let Q be an unbounded domain of class C* uniformly, and w an
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open nonempty subset of Q such that Q\w is bounded. Then. for oll T > 0 and for
cvery uy € L3(Q), there exists h € L?(0,T,L?()) such that the solution of (1.1)
satisfies (1.3). Moreover, (1.4) holds for a suitable ¢ > 0, independent of uy .

In other words. system (1.1) is null controllable for all 7" > 0.
Several remarks are in order:

(1) Combining the methods of this paper with those developed in [5], [6] the
following additional result may be proved under the assumptions of Theorem
14F

e Let v be any solution of system (1.1) corresponding to initial data vy €
L?(R2) and a control g € L*(2 x (0.7)). Then, the solutions of (1.1) may
be driven to the final state v(T). i.e. for any uy € L*(2) there exists a
control such that the solution of (1.1) satisfies u(T') = v(T).

e System (1.1) is approximately controllable m any time 7" > 0. More
precisely, for any up,u; € L%(Q2) and ¢ > 0 there exists a control h €
L3(£2 x (0, 7)) such that the solution of (1.1) satisfies

[|u(T) — wu,

L) S €.

e System (1.1) is finite-approximately controllable. In other words, given
any finite-dimensional subspace E of L*(€2) and denoting by 7 the or-
thogonal projection over E. for any ug, u; € L*(2) and £ > 0 there exists
a control h € L?(£2 x (0,T)) such that the solution of (1.1) satisfies

{ Te(w(T)) = mp(w);
| w(T) = wr]| 2y < €. O

(if) One may expect the same result to be true when f depends both u and Vu
in a globally Lipschitz way. In the case of a bounded domain this result was
proved in [8]. We refer to section 4 for a more detailled discussion of this issue.

The paper is organized as follows: Section 2 is devoted to prove the null control-
lability of the linearized system. In Section 3 we prove Theorem 1.1 by a fixed point
method. Finally in Section 4 we discuss some possible extensions of the results and
methods of this paper.

Acknowledgements: This work is part of the PhD thesis of the first author devel-
oped partly in Universidad Complutense de Madrid with the support of the ALFA
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project “Amerique Latine Formation Académique” of the EU. The authors acknow-
ledge the coordinator of this project O. Kavian for this support.

2. ANALYSIS OF THE LINEARIZED SYSTEM

For the sake of completeness, first of all, we recall the definition of domain of class
C* uniformly. We say that a domain (bounded or not) is uniformly regular of class
C* (s = 1) (see [1]), if there exists an integer r > 0 and a sequence {N;} of open
subsets of RY and homeomorphisms {¢;} from N; to the unit ball in R such that:

i) Any (r + 1) distinets sets N; have empty intersection;

i) 9NN ) = fz o] s diin > 08 NN ={x: lx| < Liag=0};
iii) If N} = o7 ' (|| < 1/2), ﬂ N; contains the (1/r)-neighborhood of 9Q;
J
iv) For y € N;, x € 9;(N;) we have |(D*¢;)(y)| <, |(D”‘¢"-';!)(:r)| < r, for all
la] < s. >

To begin with let us consider the following initial-boundary value problem for the
linear heat operator

u — Au+au=~hl, in Qx(0,7)
(2.1) u=0 on T=2380x(0,T)
w(z,0) = up(z) in £

where the potential @ = a(z,t) is assumed to be in L=(2 x (0,7")).

The following holds:
Theorem 2.1. Assume that the hypotheses above on Q, w and a are satisfied. Then,
for every ug € L*(Q), there exists h € L*(0,T, L*(Q)) such that the solution of (2.1)
satisfies (1.3). Moreover, there exists a constant C > 0 independe of uy such that
(1.4) holds.

Proof of Theorem 2.1. We proceed in several steps.

Step 1. Observability.
Let us consider the adjoint system
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- —Ap+ap=0 in Qx(0,T)
(2.2) ¢=0 on T=002x(0,T)
oT)=¢® in Q

The following observability property holds:

Proposition 2.1. For all T > 0 and R > 0 there exists a positive constant C' such
that

T
(2.3) lo(0)[32(q) < (r/ _/L,QE dxdt
0 w

for every solution of (2.2) and for any a € L>*(W* x (0,T)) satisfying
laf L2 (vw)x 0.y < R
for every solution of (2.2). ’

Remark 2.1. The constant C' depends on €2, w, the time T and the size of the
potential, but it is independent of the solution ¢ of (2.2).

In order for (2.3) to be true the fact that Q|w is bounded is essential. Thus, in-
equality (2.3) is a natural extension of the existly observability inequalities in bounded
domains ([5], [7], [8],-..).

Note that in (2.3) we get an upper bound on the norm of ¢ at time ¢ = 0, which
is the final time for the adjoint system (2.2). Due to the regularizing effect of the
heat equation one can not expect to get such a bound when ||p(0)||2(q) is replaced
by H'?:(T)HLHQ) - 0

Proof of Proposition 2.1: In order to prove (2.3) we introduce a “cut off” function
p1 € C*(§2) such that
py >0 dmt! £
(24) m=0 on w ={z€w:dzdw)>ec}
p=1 in QNw
We define
(2.5) o0 =pe.
Then # satisfies
-0, —A8=-2Vp -Vp —Apig—ape in 0 x(0,7)
(2.6) =0 on 060 x(0.7T)
NT)=¢"p1 in ©
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where
(2.7) 8 = {z e p(z) >0}

Note that, according to the hypotheses above on 2 and w, © is a bounded open
set. We now apply global Carleman inequalities in (2.6): Following [6] or [7], we
introduce a function n° = n°(z) such that

1’ € C*(®)
(2.8) >0 in 6, n°=0 on 0O
Vn®£0 in 9_\10
We refer to [6] for the proof of the existence of a function satisfying (2.8). Let
Ko > 0 be such that K, > 5mea.xn° - 6meinn° and set

B =n+Ky, B= g mex, pl(z) =N
2]
where A is a sufficiently large positive constant that only depends on © and w and

that will be fixed later on. Notice that p! > 0 in 6. We also introduce

) B i
o0 = gihs,  pat) = e | | = exnlota )

and the space
Z={qeC*®x(0,T):q=00nT=080x (0,T)}.
The following Global Carleman Inequality holds (see for instance [5]):

Proposition 2.2. There exist positive constants C., s, > 0 such that

2 o= oal + 180 dedt +

§ JJex(0m

+s]/ p 2Bt YT — t)7 [Vq|? dzdt +
ex(0,T)

(2.9) + s / f p~ 27T ~ t)73 |g|* dzdt <
ax(0,T)

<C, [ / / 0218, + Aq|? dzdt +
@x(0,T)

+ 83 // p~2t73(T — )73 |q|? dzdt
wx(0,T)

for all g € Z and s > s;. Moreover, C, depends only on © and w and s, is of the
form

(2.10) s1 = 01(8,w)(T + T?)
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where 01(0,w) is a positive constant that only depends on © and w.

Let us now complete the proof of the observability inequality (2.3). Let @ € L%()
be given. By density, we can write (2.9) for ¢ = 6, with # being the solution of the
system (2.6). Taking into account that 8;+ A8 = 2Vy-Vp; + Aprp+aprg, it follows

that

(2.11)

5 / / p~ 2t (T - t)! dzdt +
©x(0,T)

s3 // p*23t”3( t)73|0)% dzdt <
ex(0I)

<G // p~%|2Vy - Vi + Aprp + aprp|® dadt +
ex(0,T)

+s° / f p? |9[2da:dt] z
wx(0,T)

£t {4 // V- Vpi|? p7% dadt + 4// |V - Vo1 Apyp|dedt+

©x(0,T) ex(0,7)

+ 4]/ p~*|V - Vprapro|dadt + // p~ 2| App|*drdt+
ex(u,T) ox(0,T)

+ 2[/ p~%|Apypap, |dzdt + /f 0~ ¥ |apyp|*dzdt+
ex(0,T) ox(0,T)

+5 // p 2t (T — )73 | ;1| drdt | <
wx(0,T)

0T / / 527Y(T = T) 3| Vip|tdadt+
wx(0,T) .

+¢T® f / pB5t73(T — 1) 73| *dadt+
wx(0,T)

+ ¢T® / / p~2t73(T — t) 73|92 dedt+
0x(0,T)

+¢o8 f / p~ 23T — ) 73| o) *dadt
wx(0,T)

ol

where ¢y depends on the norm of p; in L®(0,T, W%(Q)) and |a|Lee(@\w)x(0,7)-
Let s > sp = max{sy, ¢ "T2}. We have
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f/ P2t T — )7 | VO dadt <
6x(0,T)

(2.12) < cucg + 1)s* U/ P2 t73(T — 1)~ |Vy|* dzdt +
wx(0,T)

- f/ P2t — )73 ||? dmdt]
wx(0,T)

for all s > s9.
Let us estimate the weights appearing in (2.12):

Lemma 2.1. One has
(2.13) |07 2t™3(T - t) 73| < 25T exp(—c,T"?)
for all

s > s3 = max {2, 37%(8 n%}npl(x))‘l}.

Proof of Lemma 2.1: We observe that
(2.14) plz,t) 3T -t) =

f=(t)

for any z € ©, t € (0,T) with
1 _ 1
f2(t) = (T = )™ exp (%)—-_(%) = ’exp (ZSPT(x)) = g5(7)

and 7 =t(T —t) € [0,T?/4].
3
The minimum of g, is achieved at ¥ = gspl(:c) and g,(7) = (g— spl(:c)) e3. On

the other hand, g,(0) = oo and g, is decreasing for € (0,7) and increasing for
7 > 7. Thus,

o f:(t) = i 92(7) =

3
g:(%) = (% spl(;r)) e if T?/4 > %spl(:z:)
215 .,
9:(T%/4) = 27°T® exp(8sp* (z)T7?) if s 5sp‘(:z).
Therefore, if s > s3 as in (2.13), we have
(2.16) min_f,(t) > 2757 exp(csT %) with ¢ = 8 min p'(z).
0<t<T g
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In view of (2.14) and (2.16), (2.13) holds. 0

Remark 2.2. In view of (2.10) and (2.13), we have

(2.17) 83 < 84 = (T + (1 + o) T?).
Applying (2.13) with s as in the right hand side of (2.17), we deduce that
(2.18) |p~2t™3(T — t)7%|-00 < 2°7% exp ( - c(l +co + %)) O

Lemma 2.2. One has

16
(2.19) pAFT =) 2 = T7% exp(—csT™?)
for all x € © and t € [T/4,3T/4), whenever s > s4.

Proof of Lemma 2.2: We have

pmﬁ”%‘w—ﬂ“=hiﬂ
with
alt) =07 = Oexp (L) = (222 — it
and 7 = t(T —t) € [0,T?/4].
& e

When t € [T/4,3T/4], one has 7 € T 7l
Proceeding as in the proof of Lemma 2.1, we deduce that

ha(t) < < T? exp(csT-?),

max
T/4<1<3T/4 16

provided s > T2(81n_i11 pl(r))_l. In particular, this is the case if s > s4. Therefore
9
=l g S | =
p St (T —t)" 2 ey T™% exp(—esT™*)
in © x [T'/4,3T/4] whenever s > s;. This concludes the proof. O

Remark 2.3. Arguing as in Remark 2.2, it follows that

T
for s = s4. , d

16 1
(220) BT -t)"! > = T2 exp ( — c(l ot co)) in © x [T'/4,3T/4]

Coming back to (2.12) and using (2.18) and (2.20) we deduce



S. Bezerra & V. Cabanillas 45

(2.21) // |V6|? dzdt < ¢, [// (¥* + |V<p]2)d:rdt]
Ox(T/4,3T/4) wx(0,T)

where ¢; = exp (E(l +co+ %))

Let A; be the first eigenvalue of —A in H}(#). In view of (2.21), 8 = p1p and also
according to the choice of p, , we deduce that

(2.22) / / ©? dzdt < CQ[ / / (0* + |ch[2)da:dt].
Qx(T/4,3T/4)

Multiplying in (2.22) by © and integrating in {2, we deduce that

2.23 o Jip| % < =0.
(2.23) s il + [1veldo+ [ aptas=
Integrating this equality in [0,¢] for any ¢ € [0, T, we find
(2.24) / ALy / Pt dz. Vie[0,T)

Q )
It follows that Y
(2.25) / 0(0)2 dzx < c3 gf/’ o dz

Q T J Jax(r/a,31/4)
In view of (2.25) and (2.22), we deduce that
(2.26 ooy > eu| [ (67 olyance]

Let K an compact subset of # and § > 0. Proceeding as in the proof of (2.26), we
have

(6T-8)xK
By using regularity theory for the heat equation one obtains, from (2.27), that .
(2.28) 0022y < f f o ddt

which is the observability inequality (2.3).
In fact, one has the following result:

Lemma 2.3. Let A be a bounded open regular subset of RY. If ¢ € L*(0,T, L*(A))
is a solution of

P —AY+ap=0 in Ax(0,T)
(2.29) Yv=0 on 8Ax(0,T)
Y(z,0) =¢°(z) in A
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then Vip € L2 (A x (0,T)).

loc
Proof of Lemma 2.3: Given § > 0 and a compact set K C A let us define
£ = ¥(z,t)e(t)n(z), where
e ¢ is a regular function, £ = 1 in (6,7 — §) and £(0) = &(T) = 0.
- @7 is a regular function, n = 0 on the boundary 9A of A, n=1in K.
Then £ satisfies
& — Af+al =y — 26V - Vnp—ebAn in A x (0,7)
(2.30) £€=0 on 8AXx(0,T)
£§(0)=0

Thus, by using energy estimates, one has

|VE|L2(ax(ory) < clesym — 2V - Vi — e An|20.1,5-1(a))
where ¢ = c(a).
Furthermore, we remark that
lexypn — 26V - Vg — epAn|_L*(0, T, H™(A)) < c|v|r20,7,05(a))
and in view of V&€ = V¢ in K x (6,7 — 8) we get

IVl 2 r-s22k)) < cl¥|r207,L24)) O

In view this, we deduce that

T
f ]wFamgcf /tp? dadt.
(6,T-8)x K 0 w

Thus, (2.28) holds.
Step 2. Approximate controllability.
In view of the uniform observability inequality (2.3) the null controllability result
of Theorem 1.1 can be proved as the limit of an approximate controllability property.
Let us first discuss the approximate controllability.
Given 1 € L*(Q) and § > 0 we introduce the quadratic functional

17 :
(231) Jg({po) = 5 f / (,02 dxdt + 6}(,-90|L2(Q) + / Uy ,:‘(U) dx.
0 w Q

where ¢ denotes the solution of (2.2) with initial data Y. The functional J; is
continuous and convex in L*(£2). Moreover, J; is coercive. More precisely, in view of
(2.3), one has

Jo( 0
(2.32) lim inf s(¢)

A0l
1901 L2y —oc |'19 !1,2(51)

>0
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Then J; has a unique minimizer in L*(Q2). Let us denote it by ¢™. It is easy see
that the control hs = 3%, where ¢ is the solution of (2.2) associated to the minimizer
¢%° is such that the solution of (2.1) satisfies of J;

: (233) |’LL5(T)_IL:Z(Q) < o.

We refer to [3] for the details of the proof. In order to get a uniform bound on the
control we observe that, by (2.3),

_ 1 T
Jo(¢%) = 5 / f ¢” dudt —
0 w

T 1/2
_cl:/ f(pz d:ﬂdt:| |u0|L2(ﬂ)
0 w

with ¢ > 0 independent of §. On the other hand,
(2.35) JH(6%%) < Js(0) = 0.
Combining (2.34) and (2.35) we deduce that

(2.34)

c
(2.36) |hslr20z.12)) < 3 luolra) , for all 6> 0.
In other words, ks remains bounded in L2(0, T, L%()) as § — 0.

Step 3. Null controllability.

Extracting subseqﬁences we deduce that
(2.37) hs—=h as 6—0 weaklyin L% x (0,T)),

for some h € L*(Q x (0,T)).

It is easy to see that the limit h is such that the solution u of (2.1) satisfies (1.3).
Moreover, by lower semicontinuity of the norm with respect to the weak topology and
in view of (2.37) we deduce that:

2 c
(2.38) |Plz2@x(o,ry < liminf [hs|2x o) < 3 ol L2(q) -
This concludes the proof of Theorem 2.1. a

3. Proof of the main result
We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1: First of all note that system (1.1) can be written as follows:
u— Au+(1—-1,)f(u) = hly, — f(w)l, in Qx(0,7)
(3.1) u=0 on 0N x(0,T)
u(z,0) = up(z) in 0
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Therefore it is sufficient to analyze the controllability of the system:
u — Au+ (1 - 1,) f(u) = ¢(z,8)1, in Qx(0,T)
(3.2) u=0 on 9INx(0,T) '
u(z,0) =up(z) in 0
Indeed, if ¢ is the control for (3.2), h = f(u) + ¢ is the control for (1.1) and vice-
versa. The advantage of writing system (1.1) in the form (3.2) is that the nonlinearity
is now localized in a bounded subdomain of €2, according to property (1.2), and this
is important to guarantee the compactness properties that are needed to apply the

fixed point argument.
We introduce the non-linearity

f—gi), if s#0

f(0), if s=0.
Note that g is a uniformly bounded function with [g|e < |f|eo -
Given any v € L2([Q\w] x (0,T)) we consider the “linearized” system:
u— Au+ Lo g(v) =qly in Qx(0,T)
(3.4) u=0 on N x(0,T)
u(z,0) = up(z) in
where Q|w denotes the complement of w in © and ljqp its characteristic function.

Observe that (3.4) is a linear system on the state u with potential a = g(v) €
L ([Q\w] x (0,T)) satisfying the following bound

(3.5) la| oo a\uwix0m) < [ f/ L) -

(3:3) g(s) =

With this notation system (3.4) may be rewritten in the form
u — Au+ lgwjau=¢ql, in Qx(0,T)
(3.6) u=0 on 9N x(0,T)
u(z,0) =up(z) in Q
As we saw in section 2, s > 0 being fixed, for any v € L2(0, T, L*(Q\w)) this allows

us to define a control g5 = gs(z,t,v) € L*(0,T, L*(2)) such that the solution us of
(3.6) satisfies

(3.7) |u§(T)|L2(Q) S 6

Moreover, for every R > 0 and potential satisfying |a|r(a\w)x(0,1) < R, we have:
(3.8) as|z20,7,2()) < cluolr2() -

Therefore, the controls gs are uniformly bounded in L?(w x (0,T)).
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This allows to build a nonlinear mapping
N: L3(0,T, L*(\w)) — L*(0,T, L*(Q\w)), N(v) = u.

Thus, the approximate control problem for system (3.2) is reduced to find a fixed
point for the map N. Indeed, if v € L?(0,T, L*(w®)) is such that N(v) = u, u
solution of (3.6) is actually solution of (3.2). Then, the control gs = gs(v) is the one
we were looking for since, by construction, us = us(v) satisfies (3.7).
As we shall see, the nonlinear map N satisfies the following two properties:
(3.9) N is continuous and compact
( ) the range of N is bounded, i.e., IM > 0O:
3.10 ;
|N(U)|L2{0,T,L2(Q\w)) <M, Vve LZ(O, T, LZ(Q\’UJJI

In view of these two properties and as a consequence of Schauder’s fixed point
Theorem, the existence of a fixed point of N follows immediately. We shall return
later to the proof of (3.9) and (3.10). By the moment let us assume that these
properties hold. Then, we have found a control ¢; in L*(0,T, L*(w)) such that the
solution us of

u,& — Aug + llﬂ\w] f(U5) = Q§($, t)lw in x (0, T)
(3.11) us=0 on 90 x(0,T)
us(z,0) = ug(z) on
satisfies
(3.12) us(T)=0 in
with an estimate of the form

(3.13) |gs] L2 (0.7, 2202)) < cluo] L2 () -

Passing to the limit as 6 — 0, as in section 2, we deduce the existence of a limit
control ¢ € L*(0, T, L*(2)) such that the solution u of (3.2) satisfies (1.3) and (1.4).
Let us now return to the proof of (3.9) and (3.10).

Continuit of N. Assume that v; — v in L?(0,7, L*(?\w)). Then the potential
a; = g(v;) is such that

(3.14) a; =g(v;) —a=g(v) in LP([2\w]x (0,T))
for all 1 < p < oo and
(3.15) |aj| Lo @\wix01) < L,

with L the Lipschitz constant of f. According to Proposition 3.1 the corresponding
controls are uniformly bounded:

(3.16) lgil 201200 ¢, Vi>1
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and, more precisely,
(3.17) g =¢; in wx(0,7T)
where @; solves
— 9 — Ao+l 9(v)p =0 in Qx(0,7)
(3.18) p =0 o5t (0:T)
el 17y == @? in

with the datum ‘P? minimizing the corresponding functional in L?(€)). We also have

(3.19) 25| L2y < e
By extracting subsequences we have
(3.20) @ — @° weakly in L*()
and in view of (3.14)-(3.15), we deduce that
(3.21) @$; = @ weakly in L*(0,T, Hy(Q2))
where ¢ solves =
— i — Ap+ liow g(v)e=0 iIn Qx(0,7)
(3.22) =0 on 82x{(0,T)

p(T)=¢" in Q
We also have that
(3.23) 0y ¢; is bounded in L%(0,T, H™(Q2)),
and, once again, by Aubin-Lions compactness lemma, it follows that
(3.24) @; — ¢ strongly in L*(0, T, L*(Q\w)).

Consequently .

(3.25) g —q in L*0,T, L*(Q\w))
where

(3.26) g=¢ in wx(0,T).

It is then easy to see that ‘

(3.27) u; —u in L*0,T, L*(Q\w)),
where

ug — Au+ ligy 9(v)u=¢ql, in Qx(0,T)
(3.28) u=0 on Ax(0,T)
ke, O="ugle) "in " i

and
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(329) |'U-(T)|L2(“) S 6

To conclude the continuity of N it is sufficient to check that the limit ¢° in (3.20) is
the minimizer of the function J associated to the limit control problem (3.28)-(3.29).
To do this, given ¥° € L?(Q2) we have to show that

(3.30) J(@°) < J(@°).

But this is immediate since, by lower semicontinuity, we have

J(@°) < liminf Ji(@?),
j—oo

on one hand,
J(°) = liminf J;(v°), V4" e L}(Q)
j=oc

on the other one, and finally

Ji(@) < ;wY, Ve'eL}(Q), j>1

since ¢ is the minimizer of J; .

Compactness of N. The arguments above show that when v lies in a bounded set
B of L*([Qw] % (0,T)), uw= N(v) also lies in an bounded set of L?([Q2lw] x (0, T)).
We have to show that N(B) is relatively compact in L?([Q|w] x (0,T)). But this can
be obtained easily by means of the regularizing effect of the heat equation. Indeed,
we have

w—Au=0 in Qx(0,7)
(3.31) ' u=0 on 9Qx(0,7T)
w(z,0) = up(z) in Q

with 8 = g1, — Ljgju) 9(v)u which is uniformly bounded in L?(0, T, L*(2)). Then, by
classical regularity results on the heat equation we deduce that u is uniformly bounded
in L2(0,T, H}(Q)) N HY(0,T, H~Y(2)). Therefore, as a consequence of Aubin-Lions
compactness lemma, u lies in a relatively compact set of L%(0, T, L#(Q2\w)).

Boundedness of the range of N. According (3.13), there exists ¢ > 0 such that
the control ¢ = ¢(v) satisfies

lg(v)| 20,7, 200\w)) < C-
Classical energy estimates for the system (3.28) show that

[u(v)| 20,7, L2(0\w)) < €

as well, since the potential involved in it is uniformly bounded.
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This concludes the proof of Theorem 1.1.

4. Further comments

The results of this paper can be extended to more general equations of the form

u — Au+au+div(Bu) =h1l, in Qx(0,7)

(4.1) u=0 on 90 x(0,7T)
u(x,0) = up(x) in 0

where a € L®(2 x (0,T)) and B € (L°°(Q2 x (0,7)))". To do that, it is sufficient to

obtain appropriate observability for the adjoint system
—pp—Ap+ap—B-Vp=0 in Qx(0,7)

{cpz 0 on 90 x(0,T)

This can be done following the methods developed in this paper with minor changes.
More precisely, arguing as in section 3, we find that

T
(43) O <c [ [ oo
0 w

for any solution of (4.2) and for all a € L®(w x (0,T)), B € (L*(w x (0,T))".
Moreover, the observability constant ¢ in (4.3) remains bounded when the potentials
a and B lie in a bounded set of L=(Q2 x (0,T)) and (L>(Q x (0,T)))" respectively.
The situation is different when the state equation is of the form
w—Au+B-Vu=0 in Qx(0,7)
(4.4) u=0 on 00 x(0,T)
u(z,0) =up(z) in Q
Obviously, when B € (W'(Q x (0,T)))", system (4.4) can be written in the form
(4.1) and the methods of this paper apply. However, when B is only assumed to be

in (L®(Q2x (0, 7))V, the situation is much more delicate. Indeed, the adjoint system
takes the form

(4.2)

.

— oy — Ap —div(Byp) =0 in Qx (0,7
4s) { @ — Ao (Byp) (0,7)

w=0..0n O5x{(0,T)

and, therefore, the global Carleman inequality of Proposition 2.2 cannot be applied
without further regularity assumptions on B. Roughly speaking, in order to address
system (4.5) we would need the H~'-version of the L?-Carleman inequality in Propo-
sition 2.2. This problem was recently solve by O. Yu. Imanuvilov and M. Yamamoto
[IY] in the case of a bounded domain. They proved the Carleman inequality for the
system (4.5), only supposing B € (L*(Q x (0,T)))". Then by a fixed point method
they proved null controllability for the semilinear heat equation
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wr Au+ flz,t,u,Vu)=hl, in Qx(0,7T)
(4.6) u=0 on 9IQx(0,7)
u(xz,0) =up(x) in Q

when € is an bounded set of RV, and f is globally Lipschitz.
The extension of this result to the case where 2 is unbounded, Q\w being bounded,
is an open problem.
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