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NON LINEAR SCHRÓDINGER EQUATIONS - APPROXIMATE
CONTROLLABILITY IN NONCYLINDRICAL DOMAINS

Ricardo F. Apolaya'

ABSTRACT.- We consider O e ]Rn an open bounded set and rp be a complex

and globally Lipschitz function.
In this work we investigate approximate controllability for the non linear
Schrodinger Equation in Noncylindrical Domains:

u' - iou + <j)(U) = v . Xm in Q

u=Oin¿

u(x, O) = uo(x) in .00'

v = v(x, t) represents the control function and Xm i; the characteristic

function of OJ. The noncylindrical domain is defined by afamily of orthogonal

matrix K (t). By' we denote the derivative with respect to the time variable.

Wesaythatsystem (*) isapproximatelycontrollablein L2(.o) attime T> O

if thefollowing holds: 'For every Uo E ¡}(O) the set reachable states at

time T > O, E(T) = {u (x, T), u is the solution of (*)} is dense in L2 (Or )".

KEYWORDS.- Schrodinger Equations. Non linear Approximate
Controllability. Noncylindrical Domains.

CONTROLABILIDAD APROXIMADA DE ECUACIONES DE
SCHÓDINGER No' LINEALES EN DOMINIOS NO CILÍNDRICOS

RESUMEN.- Consideremos .o c]Rn un conjunto abierto acotado y sea tp

una función compleja globalmente Lipschitziana. En este trabajo investiga-
mos la controlabilidad aproximada para la ecuación de Schrodinger no

lineal en dominios cilindros (*), donde v = v(x, t) representa la función

de control y Xm es la función característica de OJ. El dominio no cilíndrico

es definido por una familia de matrices ortogonales K(t). Por' denotamos
la derivada con respecto a la variable tiempo.

Decimos que el sistema (*) es controlable aproximadamente en L2 (.o) en el

tiempo T > O si se cumple lo siguiente: «Para cada Uo E L2 (O) el conjunto

observado en el tiempo T > O, E(T) = {u(x, T), u es la solución de (*)}

en denso en L2 (.or)".

PALABRAS CLAVE.- Ecuación de Schrodinger no lineal. Controlabilidad
Aproximada. Dominios no cilíndricos.
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1. INTRODUCTION

The aim ofthis article is to show some results that objectify the obtaining ofthe exact boundary
controllability for Schrodinger equation in anoncylindrical domain.

Let O be a bounded opendomain in ]Rn having a boundary r of class C2. It is also

supposed that O contains the origin of ]Rn. We denote by K(t) an orthogonal matrix defined on

[0,00[. For each t e [O, T], ° < T < 00 we define the sets

0t = {x E ]Rn; X = K(t) y, Y E O}, F, = aot,

Q = U n, x {t} (Q = noncylindrical domain), ~ = U r, x {t}.
O<I<T O<I<T

This paper is devoted to the existence, uniqueness and approximate controllability of
nonhomogeneous boundary value problem:

¡
U' - if1u +c;(u) = ° in Q,.
u = v on L,

u(O) = uO in 00;

(1.1 )

where i2 = -1. Here and in the sequel the prime notation stands for the time derivative al ñt .

The genuine Schrodinger equation u' - iSu = ° in the cylindrical case was studied by many
authors and among which we can mention C. Fabre [1], E. Machtyngier and G. Lebeau. The
mathematical aspects of the noncylindrical case has been analyzed in Miranda and Medeiros [5]

and in Bernardi, Bonfanti and Lutteroti. In this article we generalize the diffeomorphism Tt : O ~ nt '
given by TI (y) = k(t)y + h(t) , where k is a real function defined 00 the nonnegative real numbers,
which is considered in [4].

Several approaches are known to solving the problem of exact boundary controllability.
We use Hilbert Uniqueness Method (HUM), idealized by J. L. Lions [3]. Our approach, such as in [1],
discuss strong and week solutions and solutions defined by transposition, which are also referred to as
ultra weak solutions.

In order to solve the problem (1.1), we turned it into an equivalent problem defined in the

cylindrical domain Q = O x] 0, T [ by using the change of variables u (x, t) = w(y, t), where

y = K(t)-' (x), y E O and x E ni. Hence, we obtain

u'(x, t) = w'(y, t) - {K(t)-l (K'(t)y)} . V'w(y, t),

Sut», t) = f1w(y, t);

where f1 represent the Laplace operator in x or iny. Since we have made these considerations, it was
obtained, in the cylinder Q, the following problem:
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{

W'-iL1W+E.'Vw+q:¡(W)=O In Q,
W = v on 2:,

w(O) = wO in Q;
(1.2)

where E (y, t) = - K(t)-I (K'(t)y). In a explicit way, we take

bj (y, t) = - ±( ± ak¡ (t). ak¡(t)] y¡.
1=1 k=1

We will show the existence of solutions for (1.2) and then we will prove that with these solutions we
can to obtain the solutions for (1.1).

For obtain the approximate controllability to problem (1.l) we defined the function g by

{

q:¡(S)-q:¡(O)'f O
() ,1S*-,

g S = S

q:¡'(O), if s = O

gis continuous, because the globally Lipschitz function, belongs to LOC) (9i). We have the problem

p' - i/').p + b . 'Vp + 'Vb . p + g(y)p = O in Q

p=O on E
p(x, O) = Po (x) in Q,

(¡2=-I) (1.3)

For the existence, uniqueness and regularity of (1.3) cf. [1].
The knowledge on the weak solution of the homogeneous boundary value problem for the

formal adjoint defined from Lw = w' - iL1w + E . Vw + q:¡(w), has akey roleo From this formal adjoint

we analyze two different classes to problem

{

w' - iL1W+ E'· 'Vw + 'VE . w + q:¡(w) = f in Q,
w=v on 2:,

w(O) = wO in Q,

(l.4)

_ n 8b.
where 'Vb = :¿_J .

j=IOy)

We state the hypotheses on K (t) as follows:

K (t) orthogonal matrix continuously differentiable for each t in [O, + (X) [. (HI)

We denote by v = (vx' v¡) the unity exterior normal vector to L. We represent by v * the

vector IVxl' In order to facilitate the writing, we represent Yj :;. by y. Vw. We will also use
~ ¡

( . , .) to indicate (f, g) = In f . g dy and 1 . 1, ((. , .» and 11 . 11 to represent the inner product and

norm, respectively, in L2(Q) and H6(Q).
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The rest ofthe artic1e is organized as follows. Section 2 is devoted to the analysis ofthe weak
solution of associated homogeneous problem to the problem (1.2). In Section 3 we establish a result
on the existence and uniqueness ofstrong solution for the problem that was considered in the Section
2. Section 4 is devoted to the ultra weak solution. In Section 5 we obtain the result on approximate
controllability.

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS TO PROBLEM (1.3)

2.1 Weak Solutions

We say that w is a weak solution of (1.4) if given

wO E HÓ(o.) and f e LI (O, T; HÓ(o.), (2.1 )

we obtain

and

T[ - - ] fTfo -(w, lf/') + i«w, lf/» + (b . \lw, lf/) + (\lb· w, lf/) + (<p(w), lf/ dt = o (f, lf/) dt (2.3)

for al! !f E L2(0, T; HÓ(o.» such that !f' E L2(0, T; L2(0.» and !feO) = Ij/(T) = O.

Next, we state our result for problem (1.4).

Theorem 2.1 Suppose that wO and f satisfy the condition (2.1). Then there exists a unique
function w: Q ~ e which is a weak solution of problem (1.4).

Proof. We shall prove of this by Galerkin method. For this end, let (ej) jEN be the sequence of

solutions ofthe eigenvalue problem:

From this we conc1ude that ej E HÓ(O) (') Hm(o). Let Vm be the subspace of HÓ(O) spanned

by [ el' e2 , ... , em] by the m first vectors ej and let

m

wm (t) = ¿g jm (t) ej (y)
j=1

be the solution to the Cauchy problem
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{

(W~ (t), e) + i((wm(t), e» + (E . V'wm(t), e) + (V'bwm (t), e) = (j(t), e)
for all e E Vm ,

wm(O) = W~ ~ wO in H6(Q.) as m ~ oo ,

(2.4)

By standard methods in differential equations, we can prove the existence of a solution for

system (2.4) on some interval [O, tm [ which can be extended, by the first a priori estimate below, over

the interval [O, T], for any real number T > O. We need two a priori estimates.

Estimate I. We multiply both sides ofthe approximate equation in (2.4) by gjm(t), conjugate ofthe

complex number gjm(t), adding from j = 1 until j = m, we obtain

(W~(t), wm(t» + i((wm(t), wm(t») + (b . V'wm(t), wm(t» +

+ (V'bwm(t), wm(t» = (j(t), wm(t»·

We consider the real parts of the both sides of the last equality. This yields:

- -
2 Re(b . V'wm(t), wm(t» = -(V'bwm(t), wm(t»

Then, we have

(2.5)

Thus

(2.6)

Integrating (2.6) over [O, t], OS; t S; tm and employing Gronwall-Belman inequality, we deduce

Therefore

(2.7)
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Estimate 11. In order to obtain estimate for w:n(t) we multiply the approximate equation in (2.4) by

A) g)m(t) and add in}. Thus, we obtain

(W:n(t), -L\wm(t» - i(L\wm(t), -L\wm(t» + (b . 'Vwm(t), -L\wm(t» + (2.8)

+ ('Vb Wm(t), - L\wm(t» = (f(t) , - L\wm(t».

From the last equality, considering the real parts ofthe both sides it holds that

Re [«w:n(t), wm(t») + (6 . 'Vwm(t), -L\wm(t» + ('Vbwm(t), -L\wm(t))] = (2.9)

Re «(J(t), wm (t»).

By using, Green formula and Gauss lemma, we infer

Because 'Vb independent of t

(2.11)

From (2.8), (2.9), (2.10) and (2.11), we deduce

~llwm(t)W + 2Re (Ob) . Owm(t) , Owm(t») +
dt Oy) oYe oYe

+ Irb . v IOw;v(t)r di = 2Re «(J(t), wm(t»).

(2.12)

Now, in arder to obtain and identity for surface integral Irb. v IOw~(t)12di we make use of

orthcgonal projection from L2 (O.) into Vm, which is denoted by Pm. We observe that if W E L2 (O.)

m
then Pm W = ¿ (w, e;) e) .

)=1

Multiplying both sides ofthe approximate equation (2.4) by e) and adding for 1 ~ j ~m, we

infer
- -

w:n -iL\wm + Pm(b . 'Vwm) + 'Vbwm = Pm f .
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From the last equality, taking the inner product ofboth sides with b . V'wm and integrating over

Os; t S; T it holds that

(2.l3)

We have:

(2.14)

and from Gauss lemma it holds that

(2.15)

and

fT - fT - rT --.b (wm, b . V'w~) dt = .b (bwm, w~) dt + .b (b . V'wm' w~) dt. (2.16)

Remark 2.1 In the proof of Theorem 2.1 we utilize the following identities:

~- law (t)12 d - -b . v m di =- Im(wm(t), b > V'wm(t» + 1m(b'· V'wm(t), wm(t» +
OV dt

+ 1m(b . V'wm(t), 'lb .wm(t» -1m(f(t), 'lb' . wm(t» +

(
aw (t) obj(t) aw (t») - -

2 Re m ,--' m + 2 1m('lb . wm(t), b . V'wm(t»-
OYe Oye oYj

-2 1m(Pm(f) ,b· V'wm(t».

We consider Pm the orthogonal projection from L2 (n) in Vm.

3. STRONG SOLUTIONS

The next theorem establish the existence and uniqueness for more regular solution. So, we consider

f e L1 (O, T; H6(n», (3.1 )

The solution obtained from of above asumptions is called strong solution ofthe boundary value problem
(2.2).

Theorem 3.1 Suppose that wO and f satisfy the condition (3.1). Then there exists a unique

function w: Q -* <C strong solution 01problem (2.2) satisfying
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W E eO ([O, T); HÓ (0»,

w' - illw + ¡;.Vw + Vb . w + lJ7(w)= I a.e. in Q,

w(O) = wO in O.

4. ULTRA WEAK SOLUTIONS OR SOLUTIONS BY TRANSPOSITIONS

In this section we consider the non homogeneous mixed problem

{

WI-illW+b.VW+lJ7(W)=O In Q

w = v on 2:
w(O) = wO in Q

(4.1)

We suppose v E L2(2:) and wO E H-1(0). From an heuristic method, we can give a concept of

solutions for (4.1).

Definition 4.1 For wO E H-1(0) and v E L2(2:), we define the solution by transposition or

ultra weak solution 01 the nonhomogeneous boundary value problem (4.1), the unique function

w E E" (O, T; H-1(Q» such that

for al! fE L1 (O, T; H6(0» and e is the weak solution ofthe back ward transpose problem

{

el - ille + b . ve + Vb . e + g(e) = I in Q

e = ° on 2:
e(T) = ° in n

(4.2)

Rernark, Given lfIo E L2(0) and h e L2 (O, T; L2(0», there exists only one function 1fI: Q ----* e,
in the sense of distributions on Q,satisfying:

lfI E e ([O, T); L2(0» (4.3)

such that
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4.1 Optimal System

Theorem 4.1 Given Zo E L2(Q), the optimal system associated a (4.1) for Yo = O is:

y' - ifly + <p(y) + b .Vy + kp . Xw = O tn Q

Y = O on :E
y(O) = O in Q.

(4.5)

-p'-iflp+b.Vp+g(p)=O in Q

p = O on :E

p(T) = y(T) - Zo in n.
(4.6)

Proof:

We consider the problem offollowing controls:
If y = y( v) is the solution of (4.1), for each k E N let us consider the functional

11 12 k 1 12Jk(v)=-v 2 +-y(T,v)-ZOL2(,",)' where k>O2 L (wx(O,T)) 2 "

and minimization problem

(4.7)

Then there exists a solution vk of (Pk), for each k E N. The derivative of J k (v) is given by: ,

JÍc(v), C; = r V· 'fdxdt + k(y(v, T) - Zo ,y(C;, T))
Jwx(O,T)

for all C; E LL(W x (O, T)).

If we evaluate J~(v) . c; in the solution vk of (Pk) we must have the Euler equation

for all c; E L2(w x (O, T)).

We denoted by Yk = y( vk) solution of system

YÁ: - iflYk + <P(Yk) + b . VYk = vk . X w m Q

Yk = O on :E

Yk (x, O) = Yo (x) m n,
(4.8)

and we introduced Pk solution ofsystem
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PÍc - if1.Pk + ¡; . '1Pk + g(Pk) = O ID Q

Pk = O on L

Pk (X, T) = Yk(T) - Zo ID O,

(4.9)

By (4.8) and (4.9) we obtain

By the Euler equation

Then

Vk + k . Pk . Xw = O

We obtain the optimal system by passaged the limit in k.

4.2 Approximate controllabllíty

Theorem 4.2 Given Yo E L2(0), !p(0) = O and v E L2(w x (O, T)) the problem (??) have

approximate controllability in L2 (O).

Proof:

Let [ e L2(0) such has (y(T),f) = O, V V E L\w, (O, T)

We defined lfI = lfI(x, t) solution the

1fI' - il1lf1 = O in Q
lfI = O on ¿

lfI(x, T) = f(x) in n,
(4.10)

Multiplying(4.1O)by Y = y(x, t) weobtained

-(y(T), f) + (1fI, v) = O, V V E L2(w X (O, T))

Then

(1fI, v) = O, V V E I3(w x (O, T») => lfI = O m w x (O, T)

By Mizohata' theorem lfI = O in n x (O, T) therefore f == O

Let Zo E L2 (O), e > 0, exist "o E L2(w X (O, T» such that
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1 1
2Vo 2

1
(T)

1
2 < L (wx(O, T» 1 (T ) 12Yk - Zo - + y ,VO - Zo

k

Then we have construct the approximate sequence in E(T) for all Zo E L2(Q).
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