
PESQUlMAT Revista de la Fac. CC. MM. de la
Universidad Nacional Mayor de San Marcos
Vol. IX W2, pp 1 - 15, LIMA - PERÚ. Diciembre 2006

A Transmission Problem with Nonlinear Damping and
Source Terms

Eugenio Cabanillas Lapa'
cleugenio@yahoo.com
B. Godoy Torres'

dontgise@hotmail.com

Z.Huaringa Segura!
zhuaringas@yahoo.es
V. Yauri Luque!

vyauri@unmsm.edu.pe

Resumen

In this article we study the wave propagation over materials consisting of two compo-
nents: one component is simple elastic while the other has 'a nonlinear internal damping
with elastic coefficients dependent on time; both components having source terms. By
using the potential well method we obtain the global existence, we also show that the
energy of the system decays uniformly to zero,
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Resumen

En este trabajo, estudiamos la propagación de ondas sobre materiales que consisten
de dos componentes: un componente es simple elástico, mientras que el otro tiene un
damping interno no lineal con coeficientes elásticos dependientes del tiempo; ambos
componentes tienen términos fuente. Usando el método del potencial, obtenemos la
existencia global, también mostramos que la energía del sistema decae uniformemente.
a cero.

Palabras Clave: Estabilidad, problema de transmisión, damping interno, término
fuente.

1. Introduction
The main purpose of this work is to study the asymptotic behavior of solutions of the

following nonlinear transmission problem
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p¡ Utt - buxx = f-Ldl (u) , in ]0, Lo[ x lR+ (1,1)
P2vtt-a(t)vxx+g(Vt)=f-L2h(v) ,in ]Lo,L[xlR+ (1,2)
u(x,O)=O=v(L,t) ,t>O (1,3)
u(Lo,t) = v(Lo,t) , t > ° (1,4)
bu; (Lo, t) = a (t) Vx (Lo, t) , t > ° (1,5)
u (z, O) = Uo (x) , Ut (x, O) = ul (x) , xc ]0, Lo[ (1,6)
v (x, O) = Vo (x) , Vt (x, O) = VI (x) , Xc ]Lo, L[ (1,7)

where Pl, P2 are different densities of the material, f-Li E R, i = 1,2, b > 0, 9 is a non- .
decreasing el function, a is a elastic coefficient dependent on time and fi is a function like
-luIPi-l u, tu > 1, i = 1,2.
Transmission problem or diffraction problems arise in several applications in physics and
biology. The stability of conservative system by means of a internal damping has been stud-
ied by many authors (see [1 - 7], among others). For the transmission problem there exists
several works about controllability and stabilization by mens of feedback fuctions on a part
of the boundary (see [8], [11], [12]).

When the coefficients dependent on time and i. (s) s :::: 0, f-Li = -1, Muñoz Rivera and
Cabanillas L.[14] showed that solutions converge to zero exponentially. In our case we have
f-LiclR, Ifi (8)1::; 181Pi, \j 8 c.R, with non linear damping g.

The first part of this paper is to study the global existence of regular and weak solution
to problem (1,1)-(1,7), here we have there sorne technical difficulties that we need over come
because of the coefficient dependent on time and the source termo Sernigroup arguments
are not suitable for finding solutions to (1,1)-(1,7); the method in [8] does not seen to be
directly applicable to the function fi, therefore, we make use of a Galerkin approximation
and the potential well method.

The second part is to give energy decay estimates ofthe solution of (1,1)-(1,7) for a general
non-linear damping g. We found that rate of decay of the solutions depend on behavior of .
the dissipative term in a neighborhood of zero, that is for a linear dissipation we obtain
exponential decay while for a polynomial dissipation we obtain polynomial decay.

Our paper is organized as follows: In section 2, we present the notations and statement
of results. In section 3, we prove solvability of (1,1)-(1,7), while section 4 deals with the
asymptotic behavior of the solutions obtained in section 3.

2. Notations and statement of results
We denote

(w, z) =¡w (x, z (x)) dx,
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where 1 = ]0, Lo[ or ]Lo, L[ for u' s and v' s respectively. Assurne that

(Al) We take fi E el (IR), i = 1,2, fi (O) = °
If: (s)1 s Is1Pi-1

and without less of generality, we assurne P1 ~ P2.

s

Fds) = /-ti J fi (~) d~
o

(A2) Let 9 : IR ~ IR be a nondecreasing el function such that

g(s).s>O for all s =1= 0,

and there exist Ci > 0, i = 1,2,3,4 such that

{ e,lsl' < Ig (s)1 S c2IsI1/p,' if [s] S 1

c31s1 < Ig (s)1 S C41sl, if [s] > 1

where P ~ 1

(A3) a Ewi~~(O, (0), a (t) ~ ao > 0, for sorne ao > °
By V we denote the Hilbert Space

V = {(w, z) E H 1 (O, Lo) x H 1 (Lo, L) : w eO) = z eL) = O; w eLo) = z eLo) }

By El and E2 we denote the first order energy associated to each equation

Lo

El (t, u) = ~Pllut~(t)12 + ~lux (tW - J F1 (u) dx
o
L

E2 (t, v) = ~P2lvt (t)12 + a~t) Ivx (t)12 - J F2 (v) dx
Lo

le )-lbl 12_-.!!:.LIIP¡+1
1 u - 2 Ux Pl + 1 U p¡+ 1

J e ) - 1 1 12- -.l!::L 1 IP2+l2 V - 2aO vx p2+1 v p2+1

E (t) == E (t, u, v) = El (t, u) + E2 (t, v)
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and define the stable set as W = {(u,v) E V: I(u,v) > O} u {O}
In order to show the decay property we will need the following lemma

Lemma 2.1 Let E: IR+ --+ IR+ be a nonincreasing function, and assume that
there exist two constant p > O and e > O such that

+00

J E±lE 2 ( t) dt ::; cE (s) O::; s < +00

s

The, we have
-2

E(t) < cE(O) (1 +t)P-I , for al! t ~ O and p > 1
E(t) < cE(0)e1-wt, for all r g ü if p=l

where e and w are positive constants.

3. Existence and uniqueness of solutions
We begin this section defining what we mean by weak solution to the system (1,1)-(1,7) .

Deftnition 3.1 We say that couple {u,v} is a weak solution of (1,1)-(1,7) when

{u,v} E Loo (O, T; V) n W1,00 (O, T, L2 (O, Lo) X L2 (Lo,L))

and satisfies

~ L T~

-Pl J u1 (x) <P(x, O) dx - P2J VI (x) 'IjJ(x, O) dx - PI J J ut<ptdxdt
o Lo o o
TL TLo TLo

-P2 J J vt'IjJtdxdt + bJ J ~x<Pxdxdt + J J 11 (u) <pdxdt
OLa 00 00

T L T L T L

+J a (t) J vx'IjJxdxdt + J J 12 (v) 'ljJdxdt +J J 9 (Vt) 'ljJdxdt = O
o ~ o ~ o ~

for any {r.p, 'IjJ} E C2 (O,T; V) such that,

In order to show the existence of strong solutions are need a regularity result for the elliptic
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system associated to the problem (1,1)-(1,7) whose proof can be obtained with little modi-
fications in the book O.A. Ladyzhenkaya and N. N. Ural'tseva ([14] ,theorem 16.2)

Lemma 3.2 For any given functions FE L2 (O, Lo), G E L2 (Lo, L) there exists only solution
{u, v} of

-buxx = F in ]0, Lo[
-a (t) Vxx = G in ]Lo, L[
u(O)=v(L)=O
u (Lo) = v (Lo), bu; (Lo) = a (t) Vx (Lo)

with t a fixed value in [O,T] satisfying u E H2 (O,Lo) and v E H2 (Lo, L)
Now we are in a position to state the global existence results.

Theorem 3.3 Suppose that assumptions (Al) - (A3) holds.
If {uO,VO} E W, {U1,V1} E L2(0,Lo) x L2(Lo,L) and

máx {I¡;, Ib-1cP1+1 [~P2 + 1E (O)exp ¡T la' (s)1dS] 'Y ,
1 x b P2 - la (s)

°

I¡;,Ia-lcP2+1 [!P2 + 1E (O)exp ¡T la' (s)1ds]9} < 1
2 ° x ao P2 - 1 a (S)

°
(3.1)

then there exists a unique local solution of (1,1)-(1,7) satisfying

{u, v} E e (O, T; V) nel (O, T; L2 (O, Lo) X L2 (Lo, L))

In addition, if {UO,VO} E W n (H2(0,Lo) x H2(Lo,L)), {U1,V1} E Vand (3,1) holds,
verifying the compatibility condition

bu~(Lo) = a (O) v~ (Lo) (3.2)

then there exists a strong solution {u, v} satisfying

{u,v} E C(0,T;H2(0,Lo)xH2(Lo,L))nCl(0,T;V)n
C2 (O, T; L2 (O, Lo) X L2 (Lo, L))

Proof We employ the Galerkin Method to construct a solution.
Let {{ '{Ji, '1¡i} , i = 1,2, ... } be a basis to V.We construct approximate solution

m

{um (t) , vm (t)} =Lhim (t){ '{Ji, 'lj;i}

i=l
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which is determinate by the ordinary differential equations

Pl (u~, tpi) + b (ur:, tp~) + (ft (um) , tpi) + P2 (vft', 'lj;i)+
a(t) (vr:,'lj;~) + (g(v;n) ,'lj;i) + (12 (vm) ,'lj;i) = O (3.3)

where i = 1,2,3 ...
with the initial conditions

(3.4)

By standard methods in differential equations we prove the existence of solutions to (3,3)-
(3,4) on some interval [O,Tm[, O< Tm ~ oo. In order to extend the solution of (3,3)-(3,4)
to the whole interval [O,oo[ we need the priori estimate below.

Weak solutions. Multiplying (3,3) by h~m(t), integrating by parts and summing up
on i we get

~E (t «: vm) + (g (vm) vm) < la' (t)1 E (t um vm)dt " t ,t - a (t), ' , (3.5)

Integrating (3,5) over ]0, t[, it hold that

t

E (t, -r,vm) + J (g (v;n (s», v;n (s) ds

°t
< E(O,uO,vO)+ JI~(~]IE(S,Um(s),vm(s»

°
Employing gronwall ' s lemma, from the last inequality we see that

t

E (t, um (t), vm (t» + J (g (v;n (s), v;n (s») ds

°
(3.6)

:5:E (O, UD, VD) exp U 1:~?IdS) ,0:5: t :5:T
Now to obtain a priori estimates, we need the following result

Lemma 3.4 Let {um (t) , vm (t)} be the solution of (3,3) - (3,4) with{ uo, va} E W n V
and {U1,V1} E L2(O,Lo) x L2(Lo,L).
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If

Then{u(t) ,v (t)} E W n V on [O,T], that is, for al! t E [O,T]

!(um(t) ,vm(t)) > °
Proof. Since I (UD, VD) > ° it fol!ows from the continuity of {um (t) , vm (t)} that

(3.7)

for sorne interval near to t = °
Let tmáx> ° be a rnaxirnal time (possibly tmáx = Tm) such that (3,7) holds on [O,tmáx[' In
order to facilitate the notation, we will ornit the index m of the solution of the approxirnate
systern. Note that

J(u(t),v(t))

Consequently, we get

bluxl2+aDlvxl2 < 2(P2+1)J(u(t),v(t)) (3.8)
P2 - 1

< 2(P2 + 1) E(t,u,v)
P2 - 1

< 2 (P2 + 1) [E (O, UD,VD) exp ¡T lal (s)1 dS] in [O, t rnáx[
P2 - 1 a (s)

o
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It follows from the Sobolev-Poíncare inequality and (3,8) that

,u Ivl~:1i < 1,u11c~I+1luxIPl+1 = 1~11C~l+l luxlP1-l (b luxn (3.9)
PI-I

< IILllcP1+1 [~ P2 + 1 E(O)exp¡T lal (S)lds] 2 blUxl2b X b (P2 - 1) a (8)
o

Similarly
P2-1

IL Iv1P2+1 < IIL21cP2+1 [!P2 + 1E(O)exp¡T la
1

(S)lds] 2 a Iv 12 (3.10)
2 P2+1- ao x aoP2-1 a(s) o x

o

this from (3,9) and (3,10) we obtain

ILllul::1~ + IL2+ Ivl:~1i < b luxl2 + ao Ivxl
2 (3.11)

Therefore we get 1 (u (t) ;v (t)) > O on [O, t máx[. This implies that we can take tmáx = Tm.
This completes the proof of lemma 3.4.0

Using lemma 3.4., we can deduce a priori estimate for {u (t) , v (t)}. Lemma 3.4 implies
that

1 2 1 2E (t, u (t) , v (t)) = 2 Iud t) I + 2 Ivt (t) I + J (u (t) , v (t)) (3.12)

1 2 1 2 1> "2IUt(t)1 + "2lv¡(t)1 + p2+1I(U(t),v(t))+

+ b(P2 -1) Iu 12+ ao (P2 -1) Iv 12+ ,u1 (P1 - P2) lu1P1+1
2 (P2 + 1) x 2 (P2 + 1) x (P1 + 1)(P2 + 1) Pl+1

1 2 1 2 P2 - 1 (2 2 )> "2IUt (t)1 + 21Vt (t)1 + 2(P2 + 1) bluxl + ao Ivxl

From (3,6) and (3,12), we get

t

~ 1Ut (t) 12+ ~ 1Vt (t) 12+ 2 f;2-+ \) (b 1ux 12+ ao IVx 12)+¡(g (Vt (8)) ,Vt (8)) ds
o

( o O) (¡T la' (8)1 )< E O,u,v exp o a[S)ds :::;L1,

where L, is a positive constant independent of m E N and t E [O,T] .
Thus, we deduce that

{Um, vm} is bounded in UO (O,T; V)
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{u;", v;"} is bounded in Loo (O, T; L2 (O, Lo) X L2 (Lo, L))
wich imply that

{um,vm} ~ {u,v} weakly * in LOO(O,T;V)
{u;",v;"} ~ {Ut,Vt} weakly*in LOO(O,T;L2(O,Lo)xL2(Lo,L))

Usíng Aubín-Líons compactness lemma we have

and consequently

um ~ u a.e in JO, LoJ and f¡ (um) ~ h (u)
vm ~ v a.e in JLo, LJ and !2 (v'") ~ !2 (v)

a.e. in ]0, Lo]
a.e. in JLo, LJ

Besídes, from the growth condition in (Al) we have that

11 (um) is bounded in L2 (O, T; L2 (O, Lo))
!2 (vm) is bounded in L2 (O, T; ¡;} (Lo, L))

and therefore

Now, we note that from (3,13) and the assumption (A2), we get

tJ Ig (v;" (s)W ds < L
o

where L is a positive constant independent of m and t.
So, we can take a subsequence, still denote by (vm) such that

9 (v;n) ~ X weakly in L2 (]Lo, L[ x JO, T[)

Returning to (3,8) and using standard argument we can show,from the convergence above
that

P1Utt - buxx
P2Vtt - a (t) Vxx + X

p,ddu) in L2(0,T;H-1(0,Lo))
P,2!2(V) in L2(O,T;H-1(Lo,L))

Our goal is to prove that
X = 9 (Vt)

but this relation follows from a standard theory of monotone and semicontinuous operators
(cf. [09]) and the proof is omitted.
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Therefore, {u, v} satisfies (1,1)-(1,5).
Regularity of solutions: To get the regularity result, we take a basis

such that
{UO, VO} , {uI, VI} E span { {<,00, IbO} , {<,OI, 1b1} }

Let us differenciate the approximate equation and multiply by h~m(t). Using a similar
argument as before, we obtain

L

!E2 (t, u, v) +J g' (v;n (x, t))(v7: (x, t))2 dx
Lo

Ml (f~ (Um) U;", uZt')+ M2 (f~ (vm) v;n, v7:)

-at (t) (v:, V~t) + ~at (t) IVttl2

where
fJl 2 b 2 fJ2'2 a(t) 2

E2 (t, u, v) = 21Uttl + 21Uxt! + 21vttl + -2-lvxt!

Note that

-at(v;;, V~t) = - (at (v;;, v~))t + att (v;;, v~) + at Iv~12 (3.15)
E2 (O,u"; vm) in bounded, because on choice of the basis.

Now, from the growth condition (Al) and the Sobolev imbedding we have

(3.16)

and similarly

(3.17)

Taking into account the first estímate (3,13), (3,15), (3,17), from (3,14) and the Gronwall
inequality we conclude that

(3.18)

which imply that

{u;", v;n} ---1. {ut, Vt} weakly * in L= (O, T; Hl (O,Lo) X H1 (Lo, L))
{uZt',v7:} ---1. {ut,vd weakly* in L= (0,T;L2(0,Lo) x L2(Lo,L))
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Therefore we have {u, v} satisfies (1,1)-(1,5) and we have

-buxx = -PlUtt + /1dl (u) E L2 (O, Lo)
-a (t) vxx = -P2Vtt - 9 (Vt) + /1212 (v) E L2 (Lo, L)
u (Lo, t) = v (Lo, t), bux (Lo, t) = a (t) Vx (Lo, t)
u (O, t) = O = v (L, t)

then using lernrna 3.2 we have the required regularity to {u, v} .D

4. Exponential Decay

In this section we study the asymptotic behavior of the solution of system (1,1)-(1,7) . In
the remainder of this paper we denote by e a positive constant which takes we shall suppose
that

o, ~ P2 and
a(t) ~ b, at(t) ~ O, 'lit E ]O,oo[

Theorern 4.1
Let {u, v} be the weak solution obtained in theorern 3.3.
Suppose that (4,1)-(4,2) and (A2) hold with p = 1.
If in addition, the initial data satisfy

v~(Lo)=O
then there exists positive constants , and e such that

E (t) ~ cE (O) e-¡t 'lit ~ O.

(4.1)
(4.2)

(4.3)

(4.4)

We shall prove this theorern for strong solutions; our conclusion follow by standard density
arguments.
The dissipative property of systern (1,1)-(1,7) is given by the following lernrna.
Lernrna 4.2
The first order energy satisfies

d 2
dtEl (t, u, v) = -'-(9 (Vt) , Vt) + a¿ Ivxl (4.5)

Proof
Multiplying equation (1,1) by uc; equation (1,2) by Vt and performing an integration by
parts we get the result.O

Let 'ljJE ea (O, L) be such that 'ljJ= 1 in ]Lo - 8, Lo + 8[ for sorne 8 > O, small constant. Let
us introduce the following functional

Lo L

1 (t) = J Pl utquxdx +J P2vt'ljJqvxdx
o Lo
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where q (x) = x.
Lemma 4.2 There exists el such that

d Lo { 2 [a (t)] }dt 1 (t) :=:; -2 (P2 - P1) Vt (Lo, t) + a (t) 1 - -b-

Lo

-Lo [H (v (Lo, t)) - F1 (u (Lo, t))]- ~ J (P1vt + bv~ - 2f.J,lF1 (u)) dx
o

Proof
Multiplying equation (1,1) by qu-, equation (1,2) by 'ljJqvx, integrating by parts and using
the corresponding boundary conditions, we have

Lo [2 2]"2 P1Ut (Lo, t) + bux (Lo, t) + LoF1 (u (L1, t))
Lo-~ J [P1u; + bu;. - 2Fl (u)] dx
o

(4.6)

(4.7)

Surnrning up (4,5) with (4,7) our conclusion follows.D

Let <p E C'" (R) a nonnegative function such that <p = O in 18/2 = ]Lo - ~, Lo + ~[
and <p= 1 in R"'h and consider the functional

L

J (t) = J P2vt<pvdx
Lo

We have the following lernrna
Lemma 4.4
Given e > O, there exists a positive constant e; such that

L Lo+8 L

:t J (t) :=:; - a ;t) !v~dx + ea (t)! v~dx + ee:!(v; + 9 (Vt)2) dx + Ivl~~1~
Lo+8 L Lo

12



Proof
Multiplying equation (1,2) by r.pv and integrating by parts wé get

!J (t) -a(t) (vx, r.pvx) - a(t) (vx,r.pxv) + P2 (Vt,r.pVt) - (g(Vt) ,r.pv)

+,u2 (12 (v), r.pv)

Applying Young's inequality and hypothesis (A,l) we conclude our assertion.D
Let us consider the following functional

K (t) = 1(t) + (2Cl + 1) J (t)

Using lemrna 4.3 and fixing E = El in lernrna 4.4, where El is the solution of the equation

1
(2Cl + 1) El = 8"

we have that there exists a positive constant C2 such that

1¡L .
< -Edt, u) - 8" a (t) v;dx + EE (t, u, v) +

Lo

(4.8)

L

C2 J (v; + g(Vt)2 + (V?2+l) dx
Lo

To arrive at the desired inequality on E (t) we must estimate the last term in (4,8), we need
the following resulto
Lemma 4.5
Let {u, v} be a solution in theorem 3.3.
Then there exist Yo > Osuch that if T ~ To we have

J Ivl",+I dx < E [[ (blu"I' + IUtl') ds + [la1/'Vxl' lis 1+ (4.9)

T

+cE J IVtJ2 ds
s

for any E > Oand CE is a constant depending on T and E, for any initial data {uO, VD}, {u1, VI}

satisfying E (O,u, v) :S k where k > ° is fixed and ° < S < T < oo.
Proof.
The proof is given quite sirnilarly as in the proof of (4,11) in [8] and we will ornit it.D
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Proof of theorem 4.1.
From hypothesis on the function g, with p = 1, we get

L LJ (vi + 9 (Vt)2) dx ~ (c11+ C2) J 9 (Vt) vtdx
~ ~

(4.10)

Let us denote
L(t) =NE(t)+k(t)

with N > O. Using Young's Inequality and taking N large enough we find that

(4.11)

for sorne positive constants 80 and 81.
Substituting (4,9), (4,10) , (4,11) in (4,8), using the identity of lernrna 4.2 and integrating
from Sto T, where O ~ S < T < 00 we obtain

TJ E (t) dt ~ cE (s)
s

This inequality, by lernrna 2.1, irnplies that

E (t) ~ cE (O) e--yt

The proof of theorern 4.1 is cornpleted.D
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