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EXISTENCIA DE SOLUCIONES A PROBLEMAS ELIPTICOS NO
LOCALES CON DEPENDENCIA DEL GRADIENTE VIA LA
TECNICA DE PASO DE MONTANA
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Resumen: El objetivo principal de este trabajo es estudiar la solubilidad del problema
eliptico no local

—ﬂ-[([} IVul?)Au = f(z,u, Vu)

con condicién de frontera de Dirichlet cero en un dominio suave y acotado de R", con
f:Q—=Ry M:R— R como funciones dadas.
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iteracion.

EXISTENCE OF SOLUTIONS TO NONLOCAL ELIPTIC
PROBLEM WITH DEPENDENCE ON THE GRADIENT
VIA MOUNTAIN-PASS TECHNIQUES

Abstract: The main goal of this work is to study the solvability of the nonlocal elliptic
problem

—JU(/Q |Vul)Au = f(z,u, Vu)

with zero Dirichlet boundary conditions on a bounded and smooth domain of R”, with
f:Q2—=Rand M :R — R are given functions.
Key words: Nonlocal elliptic problems, mountain pass, iteration methods.

1. Introduction

The purpose of this article is to investigate the existence of solutions for the nonlocal elliptic
problem '

ﬂ[(/ |VulH)Au = f(a,u, Vu) in Q,
a .

w=10 on Jf,

(1.1)

where @ € RY, N > 3 is a bounded smooth domain, f: Q@ x R x RY = R and M : R — R are
given functions. The equation (1.1) is not variational and when M (t) = 1 was studied by several
authors (See :777) using topological degree, methods of sub and supersolutions, etc. So the well
developed critical point theory is of no avail for a direct attack to problem (1.1). In the present
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work we adapt the technique explored by De Figueiredo et al. [5]: we associate with the problem
(1.1) a family of semilinear elliptic problems with no dependence on the gradient of the solution;
this new problems are variational and we can apply the mountain-pass techniques, then we use
an iterative scheme.

As it s well known, problem (1.1) is the stationary counterpart of the hyperbolic Kirchhoff equation

-PIJ E pk 2] . ;
Pl — {— 3 37 uyde| up, =0 in (0, L) x (0, 00),
2L Jo ,

(E2)

u(0,t) = 0 = u(L,t). - on. (0, 7),
u(z,0) = up(z), wlz,0)=wu(z) in(0,L).

that appeared at the first time in the work ok Kirchhoft [?7]. in 1883. The equation in (1.2) is
called Kirchhoff equation and it extends the classical D’alembert wave equation, by considering
the effects of the changes in the length of the strings during the vibrations.

The interest of the mathematicians on the so-called nonlocal problems like (1.1), (1.2) (nonlocal
because of the presence of the term M ( f“ ’Vu.lzd,‘!;)) has increased because they represent a variety
of relevant physical situations and requires a nountrivial apparatus to solve them.

The paper is organized as follows: In section 2, we will give the existence of solutions for the
system ¥
—_-U(/ [Vw*)Au = f(z,u, Vw) in §,
0 (1.3)

u=0 on J,

for each w € H}(Q). In section 3 we will study the solution for (1.1) using a iterative scheme and
results of section 2.

2. Notations and Preliminaries
We will denote by C the general positive constant (the exact value may change from line to
line). For convenience, we give the following hypotheses

(H.1) (i) A typical assumption for M € C'(0,400) is that there exists mgy > 0 such that
M(t) > mq for all t € [0, +o0| '

(ii) There exists m; > mg such that M(t) = my ¥Vt > t; for some t; > 0
(H.2) We suppose that f : O xR x RY = R is a locally Lipschtiz continuous

(1) Hmyo ﬁ*}%ﬁ = 0 uniformly for all z € Q,£ € RY

ii) There exist constants a; > 0 and p € (1. £+2) such that
1 N—2

If(x. t.&)| <a(1+|t]P) VE€RY, teR. £eRY

2
(ii1) There exists constant > max {2 A} and 7T > 0 such that
1) '

0<@ (x.t.6)<tf(x.t.6) VEERY, |t|>TeR, £¢cR¥

where

o
(.1.§) = / flr.s.&)ds
Jo
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(iv) There exist constant ag, az > 0 such that
(. ,8) > asft|’ —az forall z€Q, teR, £eRY
Observation 2.1. From (i) and (ii) it follows that ¢ < p + 1
(H.3) The function f satisfies
(i) |fle &) = fla. " &) < Li|t' = t"| Yz eQ,t.t" €[0,p] |€] < p2
(1) 1f@0.€) ~ flot, €] < Lole' €] Vo €Tt e [0,p1], [E]1€"] <
where p; and p, depend explicitly on p, N, @, ay,as, a3 given in the previous hypotheses.

We recall that by a solution of (1.1) we mean a weak solution, that is, a function u € H(€2) such
that

flx, u, Vu) )
Vu-V dr= | —————pdr, forall p € Hy(QQ).
/ u dx Jo 3T, lV‘u|2)\p( v, forall ¢ € Hy(R)

Now, we are in position to establish our main result.
Theorem 1. Assume hypotheses (H.1)-(H.2) hold. Then .there elists positive constants ¢y, ¢
such that for each w € Hy(S) then problem (1.3) has one solution u,, such that

e < Juw|| £ e (2.1)

where |Jull = ([, |Vu[2)1/2. Moreover, under the above hypotheses, problem (1.3) has a positive
and negative solution.

Observation 2.2. It s well known, that iof we are looking only positive solutions, we need
assumptions (H.2) (u)-(iv) only for positive t.

Theorem 2.Assume (H.1)-(H.3). Then problem (1.1) has a positive and negative solition provided

AMoeE + LoATY?
mo — L1 AT!

where \; is the first eigenvalue of —A and My = max{|A'(r)|;0 < r < 3} . Moreover the solutions
obtained are of the class C.

3. Proof of theorem 1.

The weak solutions of (1.3) are precisely the critical points of the functional

(U
[E
—

1 ; '
Elu) = 3”.!.'”2 - / H(x,u, Vw)dx (3
“ 0

where H (i, u, Vw) = Mo IV wl?)
We will prove, by steps, that I, has the geometry of the mountain pass theoreni. and finally
that the obtained solutions have the uniform bounds stated in the theorem.
Stepl.Let w € Hi(€2) . Then there exists positive numbers p, o > 0 which are independent of w
such that
I,(u) >a Yue Hy(Q):|lull =p (3.2)
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Proof. By (H.2)(i). given any ¢ > 0 there exists § > 0 such that

et?
2my

|H(z.t. )| < V[t <6

and, by (H.2)(ii), there exists K = K > 0 such that
H(z,t.0 < KPP ¥ Ji] > 5

. g Sobolev Embedc ng 1eorei ,we ge
So, using Soholev Embedding Theo .we get

1 € y
Ly(u) 2 (5 = ) leal® = Kellual|”*"

?II‘UAI

with &, a constant independent of w. Since p > 1, the thesis easily follows. m
Step2. Let w € HJ (). Fix ¢ € H}(Q) with || o]l = 1. Then there is a 7" > 0, independent of w,
such that

In(t o) <0 forall ¢t>T (3.3)

Proof. First, we observe that, from (H.1)(ii) and (H.2)(iii)
|H(z,t,¢)| = Ci|t|® — C3, forall &>t (3.4)

So, it follows from (3.4) that

1
Lt o) =321 ol) - [ HGa,t 0. Vu)ds
: 1
< —2—t2 —ct|” +C
— —00 as {— 400

due to € > 2. So, we obtain independent of ¢ and also w that (3.3) holds.
u .
Step3. Let{u,} be a Palais-Smale sequence in Hg(Q) that is I, (u,) — ¢ and I’ (u,) — 0.Then

1
e 4 |luayl] 2Ty (1) — E(Ifb (up) up)

L

Here, we claim that L is bounded. Indeed, we consider
Q,={ze€Q:||u,(a)|| >T}

with T given in (H.2)(iii), then
' 1 f(z, u,, Vw) )
L / H{x u,, V) — ——————u, | dao +
Q, ( (. ) 0M([,|Vw]?) )
By

' 1 f(x,u,, V) ) .
H{rx.u,, V) — =", | dx
]SE'\Q” ( ( ) 0 ‘1[(_19 lv“‘lz_)

~

Lo

(3.6)
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But £, <0 and

1192 1. TPt
Wl Ve gy 4 Ly

Lo <
l Ql_ Mo ) _ p+1

I =K
Hence L < K. So {u,} is bounded in HJ(9), and it admits a weakly convergence subsequence.
From the Rellich-Kondrachov Theorem and results of weak convergence, standard argument shows
that {w,} admits a strongly convergence subsequence.
Step4. From Steps 1-3 and I,,(0) = 0, I satisfies the conditions of the mountain pass theorem. So
I, admits at least one nontrivial critical point wu,,, at an inf max level,which is a weak solution of
(1.3), that is

a) I’ [} =0

b) Iy (uy) = Inf max I,(y(?)) > « (3j7)

vl tel0,1]

where I' = {y € CY([0,1], H}(Q2)) : v(0) = 0,v(1) = T ¢} ,for some ¢ and T as in Step 2. From
now on we fix such a  and such a 7. '
Step5. Let w € H (). There exists a positive constant ¢;, independent of w such that

[uwll 2 1 . (3.8)

for all'solutionuw obtained in Step 4.
Proof. From the equation (1.3) one gets

| 2 . f(:‘guuw: V'UJ)
/ﬂjVuw_l b = ] _——Af[(fQ\VwP)uwdm _ (3.9)

By (H.2)(i)-(ii), given ¢ > 0, there exists ¢, > 0 independent of w, such that
. If[Tat, Vw)] < ('f| HE C£|ﬂp

So, we get

/IVuw|2diC S i /luulgdi+ci / Juwlp+1d$
Q m(} Ja _ Ja

E ~
(1 - Aqmo) el < el

which implies (3.8) choosing € < Aymg, sincep+1>2 =
Step6. There exists a positive constant ¢y independent of w such that

Hence we have

[[we| < €2

Proof. From the infmax characterization of u,, in Step4, choosing the path in I' as the segment
line joining 0 and (), we obtain :

[w(”-w) < I}'lzég{ [w(f U)

and from (H.3)(iv) we have

, o, tg 9 2] 0 .
ax t. (1 < max { — 4 — ot 151§
1%1210\1{, (t o) < %Lzlgx { 5 I oll |t /Q| o %.—(1,5[ 2!} (3.10)

= 9

Therefore we have obtained that
¢ BT
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Here, using the criticality of u,, for I,,, (3.10), (H.2)(iii), one has

1 P | f Tl oy V02 )20
=huyll® L co+' = : >
2” | ‘T 9] A[{.[Q |Vw|?)

! ! l|luwll® < const
= —— Loll® < const.
A2 myf

The positivity of u,, it derives from standard arguments. That is one replaces f by f defined as

fz,t,6) = { f(éﬁoté) Zi i i 8

Therefore

Here, we observe that f still verifies (H.2)(iii)-(iv)( also we take vy > 0 in step2). So we find a
critical point of mountain-pass type for the corresponding functional I, that is solution of the
problem

—M(f |Vw|?) Aty = f(, 1, Vw)  in Q,
Q
Uy =0 on 0,

Multiplying the equation by u, and integrating by parts, we conclude that u, = 0. Hence u, is
positive. m '

Observation 3.1. In Step 4 we have obtained a weak solution wu, of (1.3) for each given

w € HL(Q).Since p < iJr; a standard bootstrap argument, using reqularity theory, shows that
U, € C% for some a € (0,1). Now, if w have the additional regularity w € C*(Q), using the
Schauder reqularity theory, we show that u,, € C**(Q). As a consequence of the Sobolev embedding
theorems and Step6 we conclude that, there exist positive constants py, ps such that the solution
Uy, Satisfies ,
_ |uwllco < pr, [ Vitty||go < p2

4. Proof of theorem 2.

By applying in an iterative way Theorem 1,we construct a sequence {u,} C Hj () whereu, is
a solution of the problem

-—M’(/ |Vttn_1|)Atn = f(2, Un, Vitn_1) in Q, ‘
Q (4.1)
ity ==l om0,
obtained by the mountain pass theorem in theorem 1. We start from as arbitrary w, €
H}(Q)NC'(9). ' '

By Remark 3.1, we see that
H“'n“c“ < p1, HVUTL“'CU < p2

Now using (4.1) for u,, we get.

M(lual®Mnsr = wnll? = [M([Jttaaa]|?) = M(Jual®)] / V. (Vg — Vuy,)
- Jao
-+ / [f(z, tns1, Vug) — fz, un, V)] (Upsr — w,)
Q '
+/[f{;zf, Uy Vin) — f(2, Uny Vitg1)] (g1 — up)
0
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hence, from (H.1), (H.3). Canchy-Schwarz and Poincaré inequalities we have
Mol Uns1 = Unll* 4Macs||tn — tne1|[[[tns1 — Unl|
o N2 : —1/2
T LJ)\l I””nJrl = “n.“_) + L'J}‘} I/ H“-n.+2 = “n“““n = “n-—l”
Therefore, we conclude that
AMycE + LoAT P
Mg — Ll/\r]

=: k||un — wp-1|

|J“n+l - "“‘n,“ S ”“n — Up-—1 ”

Since the coefficient & < 1, we have that {u,} is a Cauchy sequence in Hj, and so, {u,} strongly
converges in H} to some function u € Hy.

Since ||u,] > ¢;. it follows that u # 0. Hence we find that u is a nontrivial solution of (1.1). By
the same argument as in Step6 we have that v > 0 in 2. O
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