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Resumen: En este trabajo nos refiriremos a la existencia de soluciones fuertes y
decaimiento exponencial del total de energía para el problema de condiciones iniciales
asociados con la ecuación de onda cuasi-lineal con una fuente no lineal, bajo el supuesto
de que la velocidad en la frontera es disipativa. Los resultados son probado por el
método de pozo de potencial, la técnica de multiplicadores adecuada y el teorema de
la continuación única para la ecuación de onda con coeficientes variables.
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Uniform Boundary Stabilization of Quasilinear Wave Equation with
Nonlinear Boundary Damping and Source Term

Abstract: In this work we are concerned with the existence of strong solutions and
exponential decay of the total energy for the initial boundary value problem associated
with the quasilinear wave equation with nonlinear source, under the assumption that
the velocity boundary feedback is dissipative. The results are proved by means of
the potential well method, the multiplier technique and suitable unique continuation
theorem for the wave equation with variable coefficients.

Key words: Exponential decay, the unique continuation theorem.

1UNMSM, Facultad de Ciencias Matemáticas, e-rnail: cleugenio@yahoo.com
2UNMSM, Facultad de Ciencias Matemáticas, e-rnail: vcarrerah@yahoo.com
3UNMSM, Facultad de Ciencias Matemáticas, e-rnail: fteonh@yahoo.com
4UNMSM, Facultad de Ciencias Matemáticas, e-rnail: jhernuih@unmsm.edu.pe
5UNMSM, Facultad de Ciencias Matemáticas, e-rnail: zhuaringas@unmsm.edu.pe

7

mailto:cleugenio@yahoo.com
mailto:vcarrerah@yahoo.com
mailto:fteonh@yahoo.com
mailto:jhernuih@unmsm.edu.pe
mailto:zhuaringas@unmsm.edu.pe


8 UniEormBoundary Stabilization oi Quasilinear Wave Equation

1. Introducción:
In this paper we study the global existence and the asymptotic behavior of solutions for the

quasilinear wave equation

Utt - (a + b11

U;dX) Uxx = Mlulq-1 u in ]0, l[xlR+,

u(O, t) = O, t > O,

(a + b11

U;dX) ux(I, t) = -g(Ut(I, t)), t » o,
u(x, O) = uO(x), Ut(X, O) = u1(x), x E]O, 1[,

(1)

(2)

(3)

(4)

where a, b, are positive constants,q > 1 ,M E lR and g is a suitable continuous function.
When b = O = M the above equation has been widely studied. For n 2: 1, a = a( t) and Milla-
Medeiros [6] showed the existence and uniqueness of strong and weak solutions for the problem
(1)-(4) .Araruna-Maciel [1] proved the existence an boundary stabilization of the semilinear
problem,with a nonlinear function h instead Mlu1Q-1 u such that

sh(s) < O

More recently Cavalcanti et al[3] studied the existence and uniform decay of solutions of (1)-
(4) subject to a nonlinear feedback acting on the part r1 of the boundary r = ro U rl. In
the quasilinear case (i.e. : a, b > O) with M = O Milla Miranda- Gil Jutuca[7], Lasiecka-Ong [5]
,Cavalcanti et al. [4] ,Ono [8] Tucsnak [9] have studied the problem (1)-(4).
The goal of this work is to state a result of existence and boundary stability of strong solutions
to problem (1)-(4)

1. Notation and statement of results

We denote

(w, z) =11

w(x)z(x)dx, Izlq=11

Iz(x)IQdx.

For simplicity,we always use 1·1 to denote 1·12
By V we denote the Hilbert space

V = {w E H1(0,1): w(O) = O}.

Now, we set
a 2 b 4 M q+1

J(u) ="2luxl + ¡IUxl - q + 1 lulQ+1

I(u) =a luxl2 - Mlul:!~
and define the stable set W by

w = { u E V : I(u) > O } U { e }
The energy related to problem (1)-(4) is given by

1
E(t) == E(u(t)) = "2lut(t)12 + J(u(t))
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Let 9 : IR ---+ IR be a continuous,monotone, increasing function such that g(s).s > ° for all s -1- O
and

ms2::; g(s).s::; Ms2 vlsl > 1, O< m::; M.

We assume that

, {25/2b [2(q+1) ]1/2 16C*M2(q+1)Comax -- Coa, a(q - 1) a3, a(q - 1) ,

2fLqCZ-1 [2(q+1)Co](q-1)/2 + 4fLbCZ [2(q+1)Co](Q+1)/2}
,a1/2(q - 1) a(q - 1) a3/2,(q + 1) a(q - 1)

1
<K for K>3. (5)

where C* is the constant of the imbedding V '---+ L2q(0,1) '---+ Lq+1(O, 1) and Co" are positivo
constants in (16).
We define the function on initial data

1 2 C2q
( 1

o 1 1 o 1 1 1 1) 1 1 1
2 m1 1 o 1

2 fL * 1 o 1q+1F ux' uxx ,ux = 2" »; + -;;: uxx + -a- »; q+1 (6)

where m = a + 2b(q+1)E(O)
1 a(q-1)

To get the global existence and regularity for the system (1)-(4) it is natural to deal first with
the local existence and uniqueness.In fact,we have the following local result,whose proof is routine
and is based on fixed point arguments(See [5] adapted our case)

Teorema 1.1. Suppose that the initial data UO E V n H2(0, 1), u1 E V satisfy the cornpatibility
condition

(7)

Then ihere exists a tiumber T (O < T ::; +00 ) such that the problem (1)-(4) has a unique
soluiion u on [O, T[ with the regularity

2. Global Existence and Exponential Decay
Let Tm be the maximal existence time of the solution to the problem (1)-(4).We begin with

a basic inequality for a local solution u(t) on [O,Tm[.

Multiplying ((1) by Ut

d
dt E(t) + 9 (ut(l, t)) ut(l, t) = O.

and integrating from O to t ,we get

(8)

E(t) +it
9 (ut(l, t)) ut(l, t)ds = E(O)

In particular E(t) is non-increasing on [O,Tm[ and

E(t) < E(O) (9)

for all t E [O,Tm[.

Now ,to obtain a priori estímate ,we need the following result
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Lema 1.1. Let u (t) be a solution to the problem (1)-(4) with UD E W n H2(0, l)and u1 E V. If

[
2( 1) ] (q-l)/2

a = !!'C;+l q + E(O) < 1
a a(q-1) (10)

then u (t) E W,on [O,Tm[ .

Prueba. Suppose that there exists a number t* E ]0, Tm[ such that u(t) E W on [O, t*[ u(t*)
ti. W.Then we have

I(u(t*)) = ° and u(t*) =f. °
Since u(t) E W on [O, t*[, it holds I(u(t)) ~ ° on [O, t*]. Then, we deduce that

(11)

a 1 2 b 4 fJ, q+l
J(u(t)) "2 ux(t)1 + 4Iux(t)1 - q + 1 lu(t)lq+l

1 a(q - 1) 2 b
q _ 1I(u(t)) + 2(q + 1) lux(t)1 + 4lux(tW

> a(q - 1) lu (t)12 on [O, t*]
2(q + 1) x

Consequently,having in mind that E(t) is a non-increasing function,we get

lux( t) 1
2 < 2(q + 1) J(u(t)) (12)a(q - 1)

< 2(q + 1) E(u(t))
a(q - 1)

< 2(q + 1) E(O) on [O, t*]
a(q - 1)

It follows from the Sobolev-Poincaré inequality,the hypothesis and (9) that

[
2( ) ] (q-l)/2

< !!.C'!+l q + 1 E(O) .a IUx(t)12a a(q - 1)

< alux(t)12 on [O,t*]

(13)

From (12) and (13) we obtain

Therefore,we obtain
I(u(t*)) = a IUx(t*)12 - fJ, lu(t*)I:!~ > °

which contradicts to (11).Thus we conclude that u (t) E W,on [O,Tm[ .•

We shall state our main result
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Teorema 1.2. Suppose that q > 1 and p, > O. 1f UD E W n H2(O, 1) ,u1 E V verifying the
compatibility condition (7) and

[
2( 1) ] (q-1)/2

a = !!.C'!+l q + E(O) < 1 .
a a(q - 1)

F (lu~1,Iu~xl ' lu;l) < ~

with O < 100 < 1,then the problem (1)-(4) admits a global solution u = u (x, t) satisfying

(14)

(15)

u E u- ([O, +00[; W nH2(0, 1))
Ut E Loo ([O, +00[; V)
Utt E Loo ([O, +00[; L2(O, 1))

Furthermore, the energy determined by the solution u has the following decay rate

where Co, and I are positive constants .
Prueba. Let u(t) be a unique solution of the problem (1)-(4) in the sense of theorem (1.1) on
[O,Tm[ .We shall show that this solution can be continued to Tm = +00. For this it suffices to
derive appropriate apriori estimates including second order derivatives of u (t) and to obtain it
we will assume the following lemma to be proven later. •

Lema 1.2. For a local solution u(t) of (1)-(4) on [O, Tm[ ,it holds

E (t) :::;c-:". (16)

First of all, we suppose that {UD, u1} are more regular ,e.g. they satisfy

UD E W n H3(O, 1), u~x E V, u1 E V n H2(O, 1)

(a + b 1
1

lu~12dX) u~(1) + g(u1(1)) = °
(

1 ) -1 [ 1
u~x(l) = - a + b 11u~12 dx 2g'(u1(1))-lb 1 u~u;dxu~(1) + p, luO(1)lq-1UO(l)]

-g' (u1 (1) )-1u;(1)

If (1) is divided by

and the expression resultantly is differentiated with respect to t.it yields

1 () () _ (3'(t) () uq I ()lq-1 ) (3'(t) q-1
(3 ( t) Uttt t - Uxxt t - (32 ( t) v« t + (3 ( t ) u t Ut (t - (32 ( t) Iu (t ) I u (t ) (17)

Multiplying equation (17) by Utt and integrating, we get

(18)

+~~) (lu(t)IQ-1 Ut(t), Utt(t)) - ~/(~?(lu(t)IQ-1 u(t), Utt(t))
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where

Making use of the generalized Holder inequality,observing that q~l + iq+ ~= 1, considering the
Sobolev imbedding we have

I (Iu(t) Iq-1 Ut( t), Utt(t)) I < Iu( t) 12qIUt( t) 12ql'Utt(t) I
< C'!-l lux(t)lq-1 IUxt(t)llutt(t)1 (19)

and
I (Iu( t) Iq-1 u( t), Utt( t)) I :S Iu( t) I~qIUtt( t) I :S C,! IUx(t) Iq IUtt( t) I

Combining(18) and (19)-(20) we deduce

:t H(t) + 2;t) IUtt(l, t)12 :S 23~2b [~~~ ~ ~~] 1/2 E (t)1/2 H(t)3/2 +

16C*M2 (q + 1) E (t) H(t)2 + {/LqC;-l [2(q + 1)] (q-l)/2 E (t)(q-I)/2
a3 a(q - 1) a1/2 a(q - 1)

+2/LbC;t [2(q + 1)] (q+l)/2 E (t)(q+1)/2} H(t)
a3/2 a(q-1)

(20)

(21)

On the other hand,by using the original equation ((1) together with the compatibility conditions
on the boundary,we get

Since ua E H2(0, 1), the Sobolev's imbedding implies

where mI = a + ~(~~NE(O). Thus ,we obtain

and from definition of H(t) it follows that

H(O) :S ~ lu;j2 + ~ (mi lu~xl2 + /LC;q lu~12q) . (22)

Our next goal is to show that H(t) is bounded for all t greater or equal to zero.Actually,we will
prove that

H(t) < Ea for all t 2: O (23)

where Ea is defined in (15).In fact.suppose that (23)is not true.Then it will exists a t* > O such
that

{

H(t) < Ea ,

H(t*) = Ea

for all O :S t :S t*
(24)
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If (21) is integrated from O to t* we get

C M2 ( ) 1t* {Cq-1 [2( 1)] (q-1)/21t*16 * q + 1 Co 2 -,sd p..q * q + -,s(q-l)/2d+ 3 ( ) 1:0 e s + 1/2 ( ) Co e sa aq-1 o a aq-1 o

u» [( • (q+1)/21t* }+ ~ 2 q + 1 co e-,s(q+l)/2ds 1:0
a3/2 a(q - 1) o

(25)

By using the function F defined in (6) and the estímate (22 ) in (25) yields

* (1 01 1 o 1 1 11) 2
5
/
2
b [2(q + 1) ] 1/2 3/2H (t ) :S F »: ) Uxx , »; + -- ( )Co 1:0a'"'j a q - 1

16C*M2 (q + l)co 2 { 2/-LqCJ-1 [2(q + 1) ] (q-l)/2+ ~+ ~a3'"'j a(q - 1) '"'ja1/2(q - 1) a(q - 1)

4ubCJ [2(q+1) ](q+l)/2}+ Co 1:0a3/2'"'j(q + 1) a(q - 1)

(26)

Combining (5) and (15) with (26),we obtain

H(t*) < 1:0

which is a contradiction with (24h,therefore we reach our aim (23).
From definitition of H(t) ,we conclude

1 2 1 2-IUtt(t)1 + -IUxt(t)1 :S 1:0
2m1 2

for all t 2:: O (27)

From (27),system (1)-( 4),the classical elliptic theory and trace theory ,we get

Then,we conclude that the local solution u(t) with u(O) = UO ,Ut(O) = u1 exists in fact on [O,oo]
and it satisfies all of the above estimates on [O,00[. The proof of theorem is now finished.

Proof of Lemma (1.2) The method used here is based on the contruction of a suitable
Lyapunov functional and a new continuation theorem for the wave equation with variable
coefficients. Multiplying equation (1) by xu¿ we get

d 1 [ 2 ( 2) 2Jdt (Ut (t ) , xUx (t )) = - 2 IUt (t ) I + a + b Iu.¿ (t ) I IUx (t ) I +

~ [u;(l, t) + (a + b IUx(t)12) u;(1, t)] + /-L (lu(t)lq-1 u(t), xux(t)) (28)

But

1 (lu(t)lq-1 u(t), xux(t)) 1 < lu(t)l~q lux(t)1
< lu(t)I~1-0)q c~q IUx(t)IOq+1 ) O < e < 1 (29)
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where we have used the interpolation inequality and the fact that lu(t)lr :::;C, IUx(t)1 ,V T. From
Young inequality ,we have for all E > O, that

q(B+l)-2
where k = (E(0))2I2-{l-B)qj cfq.
Now, using (28)-(30) and the boundary condition ,we get

(31)

for some eo > O.
Our aim now ,is to estimate the last term of (31).In order to obtain it,let us prove the following
lemma. .

Lema 1.3. There exists To > O such that if T ~ Tal

(32)

[or O :::; S < T < Tm I uihere C is a positive constant independent of u

Prueba. We will argue by contradiction.Let us suppose that (32) is not verified ,and so there
exists initial data ul/,O and ul/,1 such that the solution u" of

U~t - [a + b fo1 (U~)2 dx] Uxx = J.L luVIQ-
1 ul/

UV(O, t) = O

[a + b fo1 (U~)2 dx] ux(l, t) = -g(u~(1, t))
UV(x, O) = uV'o (x), ur(x, O) = uv,l(X)

, in ]0, 1[ x ]0, +oo[ .
Vt>O
Vt>O

, V x E ]0, 1[

(33)

where u" satisfies

(34)

for any v E N. Here, we observe that in our work,in view of ex < 1 ,the energy of the initial
data {ul/,O, Ul/,l} ,denoted by El/(O), remains uniformly bounded in v ,that is there exists M > O
such that El/(O):::; M, V v E N. Consequently El/(t):::; M "Iv E N, since it is nonincreasing
function. Then we obtain a subsequence, still denoted by {ul/} ,which verifies

u" --+ u weakly * in Loo (O, T; H1 (O, 1))
u~ --+ u¿ weakly * in Loo (O, T; L2 (O, 1))
u~(1,.) --+ ut(I,.) weak in L2 (O, 1)

Applying compactness results we deduce that

UV --+ u strongly in L2 (O, T; L2 (O, 1)) (35)

and ur (1, .) --+ ut(I, .) strongly in L2 (O, T) (36)
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According to (35) we have that

\uv\q-l UV ---t \U\q-l u a.e in ]0, 1[ x ]0, T[

From the above convergence and since the sequence {\uv\q-l uv} is bounded in L2 (O, T; L2 (O, 1))
we conclude by Lion's lemma that

(37)

The term f: \uv(t)\2 dt is bounded since EV(t) ~ M, \Iv E N, \1 t ~ O and \UV(t)\2 < C' EV(t)
where el is a positive constant independent of u and t.Then from (34)

as l/ ---t +00

As S is chosen in the interval [O, T[,we have

as t/ ---t +00

and
as u ---t +00

Besides,from the uniqueness of the limit we conclude that

ut(I, t) = O and g(ut(l, t)) = O (38)

Passing to the limit in (33),when v ---t +00 we get for u

Utt - [a + b ),2(t)] Uxx - f-l\U\q-l U = O
u(O, t) = O
uAl, t) = O, ut(I, t) = O

(39)

where límv-Hoo fol (u~)2 dx = ),2(t) ,by the Ascoli-Arzela Theorem and the boundedness of
EV (t) (for a subsequence {UVk} still denoted by {UV}).
Let W = ut.Then

Wtt - ~(t)wxx = q \U\q-l W + ~g?Wt - P:~g)\U\q-l u == F(t)
w(O, t) = O = w(I, t)
wx(l, t) = O ,

where ~(t) = a + b),2(t).
Now,we shall prove a unique continuation property of the problem (40) . It is easy to see that the
equality (28) can be applicable to the solution w = Ut of the problem (40),in place of u .Hence
,using the boundary conditions,we obtain

(40)

d eadt(wt(t),xwx(t)) ~ --;¡E1(t) + (F(t),xwx)

where El(t) = ~(\Utt(t)\2 + ~(t) \uxt(t)\2) .
Here ,we observe that Q(t) = (Wt(t), xWx(t) verifies

(41)

(42)
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where qo and q1 are positive constants, qo < q1. Thus ,using (42) we have

and hence iT E1(t)dt < e ( E1(t*) +iT IF(t)12 dt)

where El (t*) = ínfO:-::;t:-::;TEl (t).
Here,we have

(43)

Ilulq-1 wl2 -:; lul~q-l) Iwl2 < e luxI
2(Q-1) Iwxl2 < eE~)Q-1 ~~t) Iwxl2 (45)

Further, by the equation we see

with some el > O,we obtain

Thus,under a little more stronger assumption than (10)

CY+ el E(0)(q-l)/2 < 1
a

(46)

we get

Then

(47)

Furthermore,by the assumptions, we have

I
f(t) I < ~ lím I ~ [a + b r (U~)2 dX] I = 2b lím I rol u~U~t dxl~(t) -- a v-Hoo dt lo a v-Hoo lo

2b 23/2b [2(q+1) ]1/21/2
< -;; lux(t)IIUxt(t)1 -:; aK1/2 a(q __ 1) E(O) EO' (48)

on [O,Trn[ . Then we have from (43)-(48)

iT E1(t)dt -:; e (E1(t*) + EO iT El (t)dt)
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taking Eo small we arrived at the inequality

for a certain constant C2 > O . Taking T > Te == C2 we obtain E1(t) = O ,O::; t ::;T
,which implies u(x, t) = u(x) ,independent of t. So,the original problem (39) implies

But, this contradicts the lemma 1.1 if u i= O .Here we observe that we may assume Tm > Yo.
Otherwise,we get the results by (9). Let us assume that u = O . Defining

"( ) _ u"(x, t)
Z x, t - A

v
(49)

we have that A" -+ O and

(50)

Besides

1
E (z" (t)) = 2 1z~ (t ) 12 + J (z~ (t )

< ~ Iz~(t)12 + ~ Iz~(t)12 + ~ Iz~(t)14

< 2~~ {lu~(t)12 + a lu~(t)12 + ~ lu~(tW} (51)

Then

(52)

Also

E"(t) > ~ {lz~(t)12 + a~ª; 11) Iz~(t)12 + ~ Iz~(t)14}

> ~ (ª - 1) E"(t).
A~ ª + 1

On the other hand,applying inequality (31) to the solutions {U"L2::1 we have

(53)

then integrating over [S.T] ,we obtain

Since K" satisfies
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for some qo, qi > O,and recalling that EV is a decreasing function ,we get

EV(T) + (50 - i) lT EV(t)dt::; C~lT (lu~(1, t)12 + luV(t)12) dt (54)

Dividing both sides of (54 ) by ),~ ,applying inequalities (52),(53 ),(34) and taking T large
enough,we conclude that EV (T) is bounded.
From (8),integrating over [t, T] ~ [5, T]

EV(t) = EV(T) +iT 9 (u~(1, s)) u~(l, s)ds

Dividing both sides of this inequality by ),~ ,we have

EV(t) < q + 1BV(T) + M iT
luV(l s)12 ds

),2 - _ 1 ),2 t,
v q v S

From (34) we deduce that

(55)

and consequently,there exists M > O such that

for all i « [S,T] and v E N.
From (52) it comes that

BV (t) ::; NI, t E [S, T], v E N

then in particular, for a subsequence {ZV}, we obtain

ZV -+ z weakly * in VXJ (O,T; Hl (O,1))
zf -+ Zt weakly * in Loo (O,T; L2 (O,1))
ZV -+ z strongly in L2 (O,T; L2 (O,1))

In addition {ZV} satisfies

z~ - [a + b fol (u~)2 dx] z~x = P, luvlq-1 ZV
ZV(O, t) = O

[a + b fol (u~)2 dx] zx(1, t) = -g (zf(1, t))

From (55),we obtain (for 5 = O)

(56)

z~(l, .) -+ O (57)

In addition, using the same idea as in [2]we prove

(58)

Passing to the limit in (56) as v -+ +00, taking (58) and hypothesis on 9 into account we have

Ztt - ~(t)z~x = O
ZV(O, t) = O
zx(l, t) = O= zr(l, t)
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Repeating the above procedure in the case u =f. O, taking f-L = O,we get z = Owhich contradicts
(50).

So, lema 1.3 is proved. _
Now, we consider the functional

with E > O.We observe that Q(t) satisfies

qüE(t) ::; Q(t) < ql E(t) (59)

Then ,from (8),(31),integrating from S to T , O ::; S ::;T < 00, using (32),(59) and choosing E> O
sufficiently small,we obtain

1sT E(t)dt::; CE(S)

which proves lemma 1.2. _
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