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: ¢ ABSTRACT

This paper deals with the robust on-line diagnosis of abnormal situations in an industrial continuous
: styrene polymerization reactor through a bank of unknown input observers (UiQ) that supervise changes
on the most relevant process parameters and exiernal disturbances. A model predictive conirol (MPC)
' scheme is implemented aiming at to stabilize the system. This may become an additional difficulty

because the detrimental effects of the feedback conirol on the detection of abnormal situations. In the

design of the UIC's a linearized model of the process is utilized. The observers are funed 1o supervise
| the change of a particular parameter of the reactor model. The procedure takes inio account possible
unicertainties in these parameters such that a robust diagnosis strategy of the abnormal situation is
obtained. Simulation results show a very promising perspective to the proposed sirategy.

Keywords: Fault Diagnesis, Abnormal Situation Management, Unknown Input Observers, Model Predictive
Control, Polymerization Reactors.

L INTRODUCTION complex sequence of decision tasks as
detection of abnormalities, identification of the
root causes of faults and magnitudes, and
planning of corrective actions. However, in a
real-iife plant environment, these tasks are not
very easy, mainly because the scale and
complexity of modern plants and overioad or
even contradictory fiow of information, thatan
operator must deal with. As & result, wrong
decisions are taken which lead to premature
plant shutdowns, sub-optimal operation of the
process and violations of safety and
environmental rules. Industrial statistics

Over the last 20 years, industrial companies
have invested tc improve process operations
by introducing Process Systems Engineering
(PSE) techniques, such as advanced control
systems, namely Mode! Predictive Contral
(MPC), and Real Time Optimization (RTO). in
many cases these investments have led to
impressive returns on investment, with
payback times measured in weeks or months.
While these investments will continue, today,
industrial companies are seeking to address

the impact of abnormal situations.

Abnormal! situation is 2 general terfn used to
describe any significant disturbance that drives
the process to an operating point far from its
acceptable range of operation, and where the
control system cannot efficiently deal with
disturbances. In this circumstance, and in

pointed that between 40% and 80% of
accidents in chemical process industries are
caused by operator errors (Sebzali and Wang,
2002). in addition, the demand by increased
productivity which forces the processes to
operate in critical conditions, increasing the
possibility of system failures that can

order to achieve effective correction abnorma——pofentially resultinplant breakdown, with loss

situation, an operator has to perforna’a 1
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and, ultimately, human lives (Huang et al.,
2002). To tackle these problems, lessons from
the aviation are being transferred to industrial
processes to achieve higher performance,
efficiency, reliability and safety. To reach these
goals, it is necessary to supervise the
production process, i.e. to diagnose faults while
the ptant is still operating in a controllable region,
to support operator to deal with abnormal
situations promptly. In this sense, fault diag-
nosis (FD), i.e. fault detection, fault isolation
and fault estimation can be seen as part of a
large sche@me for optimal process operation.

The proper coperation of the industrial
polymerization reactor is a significant busi-
ness opportunity for PSE applications, which
is commonly calied polymerization reactor
engineering in a broad sense, obstructed by
multiple technical and practical challenges.
The technical challenges are specific to the
particular case, but they are generally due to
their intrinsic characteristics such as
nonlinearity, multivariable and interactive
dynamic behavior, potential open-loop
instability and multiple steady-states, highly
exothermic reactions, varying process
conditions, unknown reaction kinetics and
high viscosity. The practical challenges are
often more significant than the technical ones.
The operation soiution must be sustainable
over the long term and robust to abnormal
situations. These challenges are re-forced by
the difficulty fo detect what is occurring inside
the reactor at 2 given instant, and how the
properties of the polymer are evolving as a
function of time. Moreover, it can be difficult
to identify whether or not the information
coming from the process is reliable without
adapted tools. Furthermore, in the case that
the process is not performing as it should, it
can be very difficult to tell which component
is responsible for the abnormality. Thus the
difficulty of monitoring polymerization on-line
and the impossibility of post-synthesis
purification make proper fault detection
technigues so useful (Kaboré et al., 2000).

Although there are & quite large number of
studies on polymerization reactor engineering,
they are mainly dedicated to such aspecis as
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designirig, modeling, simulation, optimization
and control (Embirucu et al., 19986). Very few
studies have been focused on FD. Among
these few works, Kabore et al. (2000) use non-
linear high-gain observers, Tatara and Cinar
(2002) use knowiedge-based systems and
Kumar et al. (2003) use statistical approaches.
In this paper, linear observers are used in the
design of a robust FD system for on-line diag-
nosis of abnormal situations in a styrene
polymerization process. First of all, a MPC
control sirategy is implemented aiming at to
stabilize the system. Next a bank of Unknown
Input Observers (UIO's) is used for fault
detection of the most relevant process
parameters and external disturbances;
meanwhile a structured residual approach is
used for fault isolation. Finally, estimation of
the fault magnitude is performed using the
freedom remaining in the observer design. The
design of the UIO's is based on a linearized
model of the process. The effectiveness of the
proposed strategy is verified through numerical
simulations carried out on an industrial styrene
polymerization reactor.

ll. THE POLYMERIZATION REACTOR

The polymerization reactor is usually the heart
of the polymer production process. In this
paper, the industrial process described by
Maner et al. (1996), for free-radical initiated
bulk and solution styrene polymerization in a
jacketed continuous stirred tank reactor
(CSTR) is used. A simplified schematic
diagram of this process is shown in Figure 1.
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Figura N° 1. Schematic diagram of the styrene
polymerization reactor.
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The CSTR has three feed sireams: pure
styrene monomer, e2zobisiscbutyronitrile
(AIBN) initiator dissoived in benzene and pure
penzene scivent, Assuming the standard
mechanism for iree-radical polvmerization, the
fotiowing model for this polymerization process
rom [Aaner et ai. (196€) is presented:
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Equation (7) is inciuded in the mode! to
simulate measurements of the intrinsic
viscosity (77 ) instead of the number average
molecular weight (M, ), which is rarely
available on-line. The process has three
steady-states, but it is designed to operate in
the middle point, because of the high
conversion it provides. Process parameters
and steady-state operational conditions are
listed in Tables 1 and 2, respectively. For more
delails about the model, the interested reader
is referred to the original reference.
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Table N° 1. Process parameters for the polymerization

iMiean heai capacity of reactor fiud

reactor.

Variable description Tag Valve
e 4,
.:::an;:;:sn energy for initiation Eg 14,897 °K

‘ f;cak;i:fn energy for propagation Ep 3857 K
e | 454 10" Uimol )
f;t;ﬂ::n energy for fermination i Ei 843 *K i
initiator efficiency ; 5 08 %
Heat of polymerizafion reaction = AHJ’ 1€,70C calimol ‘
vionomer moiecular weight ,M m 104 14 g/mol

| Mean density of reactor fiuid x ‘ pcp 350 call'K L)

i Density of cooling jacket fiuid x

Heal capacity of cooling jacket fluid

| PeCpe

95E.3 cal/(*K L)

Table N° 2. Steady-state operational condition for the

polyrmerization reactor.
Variable description Tag Value

Flowrate of soivent O, 450 Lin

Fiowrate of monomer Qm 378 Ln

Reactor volume Vv 30001

Volume of cooling jacket V. 331241

Temperature of reactor feed T]’ 330 °K

!
Inlet temperature of cooling jacket | T ¥
fluig s of = ot
I
Concentration of initiator in feed | Lf % T 0.5888 moliL
s !

Concentration of monomer in feed [M i ] 8.6881 moilL

Concentration of initiator in reactor | [I ] 66822 x 107 mollL

Concentration of monomer in ‘ [ T = I

i M 3.3245 mollL

Temperature of cooling jacket fiuid Tf 305.17 "K

Molar concentration of the dead B 27547 x 107 moliL

polymer chains 0 L

Mass concentration of the dead D 16.110 oA

polymer cnains ! i i

Flowrate of initiator | Qf 108 U

Flowrate of cooling jacket fiuid Q,;- 471.6 Lh

Intrinsic viscosity n 2:9091 Lg |
1

Temperature of reactor ' Te J 323.56 K i

i, THE CONTROL SYSTEM

The difficulties in designing an effective con-
irol system for the polymerization reactor arise
from their intrinsic characteristics. MPC
technology maybe 2 good alternative to deal
with these problems {Schnelle and Rollins,
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1998; Qin and Baogwell, 2003). In the present
case, the first goal is to siabilize the system.
For this purpose, a control system is designed
aiming at to manufacture a uniform polymer
with a target A/, , while reguiating 7, for
both safety and economic considerations. The
control policy is carried out by manipulating
0; and O, . However, as mentioned earlier,
on-line measurement of is rarely available and
is used instead, characterizing an inferential
control approach.

For this process, a 2x2 MIMO control system,
based bn the infinite-horizon MPC (IHMPC)
algorithm, as presented by Rodrigues and
Odicak (2003), is implemented. The confroller
design incorporates an input-cutput linear
process model, which is obtained by step
response test. Some parameters of the [HMPC
controlier are the sampling time h and the con-
trol horizon . Other tuning parameters are not
shown here. In addition to the MPC control
structure, and in order to maintain a nearly
constantvolume fraction of solvent in the reac-
tor, & ratio contro! law is implemented as
(Maneretal., 19958}

Qs =1.50m - 0; (8)

IV.ROBUST FAULT DETECTION WIiTH
UNKNOWN INPUT OBSERVERS

Observer-based apprecach has become the
most popular and important method for model-
based FD (Patton and Chen, 1887; Frankand
Ding, 1997), especially within the automatic
control community. This method is based on
the concept of analytica! redundancy, where
the inconsistency between the estimated and
actual output is used as a residual (- ) or fault
indicator. Later, the residual is evaluated and
a simple binary decision (S, ) is performed
aiminig at to decide if the Tault has occurred.
Observer-based fault detection approaches
make use of the disturbance decoupling
principle, in which the residual is designed, in
the ideal case, by decoupling the effects of
faults from unknown inputs (disturbances,
noises and modeling errors), or decoupling the
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effects of faults from each other for the
purpose of fault isolation. A way to achieve
this is by using the so-called unknown input
observers (UIO’s) (Chen and Pation, 1989).

UtO’s are a generalization of the Luenberger
observer that with a slight modification is used
to solve the robust fault detection probiem,
and is designated as unknown input fault
detection observer (UIFDO). Several methods
such as algebraic, geometric, inversion
approach, generalized inverse, singular value
dgecomposition {SVD}, and the Kronecker
canonical form technigues have been
proposed to the design of the UIFDO. Here,
we follow the SVD approach proposed by Hou
and Muller (1984).

We assume that in the presence cof faults, a
process can be represented by a linear fime-
invariant (LT1) system as follows:

x(k+1) = Ax(k)+Bu(k)+ Ef (k)
(k) = Cx(k) ()
where x e "™ is the staie vector, 1z "™ is
the input vector, ¥ €”1™ is the ouiput vector,
f e"#is the fault vector and k is discrete
sampling instant. A "1™ is the system
matrix, B ¢ "1™ is the input matrix, C ¢ "1™
is the output matrix and E "1™ is the fault
distribution matrix, which is assumed fo be
known. For the purpose of fault isolation, the
vector f is partitioned into / = Lfl fz}r .
The vector £, contains the faults that will be
insensitive for the fault detector and the vector
/> contains the faults that will be monitored
from the process. Even, the matrix E is
partitioned into E E[E] EZ]' Here, the
cbijective is to decouple from other faults in
Eg. (9). For this purpose, consider the non-
singular transformation matrix , where is
obtained from the SVD of | i.e. . Thus, applying
the statertransformation to Eq. (2} resulis:
Ej = U;*LEOI }VIT
Thus, applying the state transformation z =
Tx to Eq. (9) results:

Tk
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Sk +1)= TAT " 2(F)+ TBu(k)+ TE} fj(k) + TE /2 (%)
y(k) = crlz2(0) (10)

Coensider the following partitions:

aty] . [Ay
z(k){ 1O par I:LA“ A”}.

zz(kJJ' A3y Az
TB Bj]

In B.’ZJ CT —[Cl Cw]
[

TEFJE“] s V[EH‘[

o g | E22

The transformed system can be divided into
two subsystems as foliows:

n(k+1) = Agpn () + Appzp (k) + (11)
Biu(k)+E11/1(k)+E31 f2 (k)
zp(k+1)=Ag1z1(k}+ Agpzp (k) +
‘Bau(k)+Ez2 f2 (k)

(12)

y(k)=Cyz1(k)+Cazp(k) (13)

If Cyis of full rank, z; (k) can be eliminated
from Eq. (12) by substituting z, (k) obtained
in Eq. (13). Otherwise, if is not of full rank,
consider & non-singular transformation matrix,

T = Ugsush that Uz is obtained from the
2

SVD of, Ci =Uz[ . }Vg i.e. Applying the
|52

output transformation ;= 1yy to Eq. (13)

resuits:
=4 |
¥ (k):Ugy(k):{ O‘J\{zl(k)v
r (14)
U2C2~.£(k)
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Consider now the partitions:

® | yTe, ;sz}
k)|’ 1C22

2

Then, Eq. (14) can be written as follows:
¥ - TT 3

y1 (k) =XV, z1{k)+ Ca122(k)

¥2(k)=Caaz2 (k) (16)

Next, substituting z; (k) from Eq. (15) into Eq.
(12}, and applying a2 Luenberger observer in
the resulting eguation, 2 UIFDO is obtained
of the form:

22 (k+1) = A2222 (k) + Bau(k) + Ag1 (£2V])
Lk s S S =
—'—y] (k)—:Kl\yz(k)—szﬁg(ic}J (17)

r(k) = y3 (k) - Caa29 (k) (18)

where A,; = Ay — Ay (Z,V5)7Coy-
Equation {18) represents the residual vector.
The observer gain K in Eg. (17) can be
computed by the usual pole placement
approach. Nofice that the order of the UIFDO
is (n—ny), where n, =rank(E;). The
following theorem states the existence
conditions for this UIFDO.

Theorem: Necessary and sufficient
conditions for the existence of the UIFDO (Hour
and Muller, 1894):

(1) rank(CEy) = rank(Eq)
(i) (C2z2.A73) is a detectabie pair.

The decoupling procedure of £, from Eq. (9)
and the structure of the UIFDO are illustrated
in Figure 2.
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Figure N° 2. Fault decoupiing procedure and structure of the UIFDO.
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5. THE FAULT DIAGNOSIS SYSTEM

The FD system is based on an open-ioop
approach, where the relation between the input

2

and output signals is described by the open-
loop process model, as shown in Figure 3.

Figure N°® 3. Open-loop FD scheme.
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From Figure 3, it can be seen that the FD
system can be designed independently of the
way as the input signal is generated, i.e. if it
is a known external input signal or it comes
from a feedback controller. Hence, in theory,
the MPC controller not affects the performan-
ce of the FD system. But, in practice, this
affirmation is not valid. For instance, sensor
faults have no influence on the process
dynamics, except through a feedback can-
trol. Moreover, perfect models do not exist nor
there are common characteristic to all possible
model uncertainties, which are difficult to deal
and whose effects are fed back by the
controller. On the other hand, if the controlier
is more robust then it attenuates the effects
of the failure on the plant output. Therefore, in
conclusion, feedback controlier deteriorates
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the performance of the FD system
‘(Sotomayor, 2006).

In this work, we intend to design a FD system
that will be able to detect abnormal situations
in the polymerization process, namely
changes in the process parameters 4;, f;,
M . and disturbances in the temperature
Tf,r . For this purpose, the FD system requires
the use of the detailed phenomenoiogicat
model of the process than the linear modei
used in controller design. According Eqgs. (1)-
(7), the process model can be writien in the
following nonlinear state-space form:

EO | r0,00,70)
= = g(x(0), (1), 7 (1))

19
$(1) = A(x(1)) i

Rgv_ Per. C
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where:

‘ T
=[] M] T, T, D D%] is
the state vector, Eq Qi Q ] isthe
input vector,_ y = is the o tput
vector and f l;g M, TfT

the fault vector. Usmg a truncated Taylor
expansion, this model js linearized, around
the operating point (xo(f) 2 (1), fo ()
shown in Tables 1 and 2. The linearized model
in deviation form can be described by a
discrete system similar to Eqg. (8), with a
sampling time Az, where x=Xx-X,
u=u—-ig, y=y-ygand f =7~ fy.

Based in this linearized model, 2 bank of four
UIFDO is implemented in 2 generalized
observer scheme (GOS) {see Figure 4). This
bank of observers produces a generalized re-
sidual set, where each residual is supposed
to be insensitive to a particular fault and
sensitive to all other faults. Of this way it is
possible to isolate the fault.

Figure N° 4. A GOS scheme for fault detection and
isolation.

1) L)
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— System )’(’i:)
us:w:l(k‘J : Eq- (9} s
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Because the nonlinear features of the reac-
tor, and in order to reduce process/model
mismatch, we prefer tc use observers with
adaptive gain, in the form of a Kalman filter,
instead of static gain. Therefore, the observer
gain K in Eq. {(17) is updated as follows:

Quim. Ing. Quim. Vol. 9 N.% 1, 2006.
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%
|

K(k)=|

A2 P(k - I)sz
(20)

e
[I+c22P(k—1)c22 )

P(k) = (Ag2 ~K(K)Ca2 P(k-DA2T (21

where p is the prediction error covariance
matfrix. Finally, the residuals are evaluated on
a residual evaluation function of the form:

J(rt) =N Zﬂ’r(! ~i) (22)

with a2 weighting factor N =10 and expo-
nential forgetting factor 7 =(.1. The fault
magnitude is estimated using state
z, (k) inferred with Eq. (15) and substituting
the result into Eqg. (11). Therefore, the
estimation of the fault is obtained from the
insensitive observer as:

Alk)=(Eyy ) [1te+1) - Agp 2y (k) -

Alzfz(k)—Blu(k)] 23}
It can be seen from Eg. (23) that the estimation
of the fault magnitude at instant ; depends
on the inferred state z; atinstant k +1.7To
avoid this problem, the computation of the fault
estimation is delayed one sampling period.
The performance of the FD system is
evaluated for two abnormal situations as
shown below. For more discussion on this
subject see Sotomayor and Odloak (2005).

Abnormal situation 1: Change in para-
meter 4,

This fault scenario corresponds to a change
in the termination rate constant k: . which is
the sum of the effects of reaction disproportic-
nation and combination. These contributions
are not easily estimated as they vary with
temperature and composition, causing an
uncertainty in the overall constant &, . in
addition k, , presents a phenomenon known
as gel or Trommsdorff effect, when its vaiue
falls due to strong diffusion limitations at higher
MOonomer Conversions.
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in this study, we consider an abrupt decrease
of 5% in parameter 4; occurring at h. As can
be seen in Figure 5, the fault is isclate
perfectly, since it is alarmed by residual 7£
TMm » TTf , @nd not by residual r 4, . Figure 6
shows the estimation of the fault. The detection
and isolation of this fault is achieved in
approximately 2 h and their estimation in 15
h. after the fault occurrence.

Abnormal situation 2: disturbance in
tempgrature 77

This fault scenario is harmful, since small
increase in change in steady-state
temperature of reactor results in heat
generation exceeding heat removal, which

Pags. 43-53

causes the reactor to operate af the upper
steady-state. Likewise, is there is a small
decrease in steady-state temperature, heat
removal dominates heat generation, causing
the reactor to operate at the lower steady-
state.

Here, it is simulated 2 sudden increase of
0.5°K in the feed temperature 77 , occurring
att= 50 h. Figure 7 shows that, the residuals
r4r, TA and ryg, are sensitive and residual
7Y is insensitive to this disturbance. Figure
8 presents the estimation of the disturbance
magnitude. For this case, complete detection
and isoiation is obtained in approximately 2 h
and their estimation in 7 h, after the disturbance
occurrence.

Figure N° 5. Residual responses for change of 5% step decrease in parameter 4, .
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Figure N° 6. Estimation of fault in parameier 4, (-5%).

x1ib
; |
05 -
!
i
0 1 -
I
D £ !“, -
z |
£ |
2 |
- -FE i o
2 N
H H
€ £ p L ]
! ;_Faut estmate |
2} . J
2} TS [
{ e e e e e
25t 4
i
. ; J
o 50 103 150
Time (n}
Figure N° 7. Residual responses for disturbance of 0.5°K step increase in temperature T_,f :
2 2
Sry = ] 5-‘,» =]
1.5 15 =
r | /
£ | i
: f
R j d = 1 / ]
= i = !
i {
j J |
0.5 ; - a5 ; i
!
G s - = O £ L -
0 50 100 180 8] 50 100 150
8
= 08 = " bt
B e e e c b
/ 5
P &
T / ~04 i
EA f =
= . =03 .
i ! 19 L 4
5 j J 02;
{ 0.1 .
{
0 i x 0 -
0 50 100 150 g 50 100 150
Time () Time (h)

51




Rev. Per, Quim. Ing. Quim. Vol. 9 N.° 1, 2006. Pags. 43-52

Figure N° 8. Estimation of disturbance in temperature T_f (+0.5°K).
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Although the abnormal situation is actually
present, the MPC control system
accommodates it by compensating its effects
on the polymerization system. This
characteristic clearly shows that MPC has
certain fault tolerant properties even in the
absence of any knowledge of the failure, i.e.
by itself it constitutes a passive fault tolerant
controlier.

As seen in the presented cases, there is a
time delay between the fault detection and
isolation and the fault estimation, often larger
that the time delay between the fault
occurrence and its detection and isolation. This
is due to the lack of sufficient input-output
measurement data in the early stages of the
estimation task. Gradually, as more data
becomes available from the supervised
system, the fault estimate is refined, ie’ it
becomes more accurate and the estimate
error decreases until it reaches a minimum
and the abnormality can be identified.
Moreover, the final estimate of the fault cannot
be expected to match perfectly the true value
of the fault, due to model uncertainties.
Therefore, imperfections of the fault diagno-
sis system, in terms of delays and model

52
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uncertainties, should be taken into account if
control reconfiguration is to be considered.

VI. CONCLUSIONS

In this paper UiO's have been used to design
a robust on-line FD system for a styrene
polymerization reactor. Although the
polymerization process is highly nonlinear
and in spite that abnormal situations can be

‘usually accommodated by the MPC due to

the feedback control, the FD system based
on linear observers was very successful in
detecting, isolating and estimating the fault.
The obtained result shows that the method is
very promising for practical implementations.
Future works should consider faults in sensor
and actuators and noise effects, and the use
of the fault diagnosis information for controlier
reconfiguration, aiming tc obtain an active fault
tolerant MPC control.
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