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Abstract

The purpose of this paper is to optimize the operation of an upflow anaerobic sludge blanket (UASB) reactor. In this kind
of processes, besides to maximize organic matter removal, it is attractive to capture the biogas and to use it to provide
energy services. For this purpose, the biogas has to be produced in large quantities. Thus, we have two clear objectives
to be achieved: to maximize both the organic matter removai and the biogas production. Three multiobjective optimization
techniques are used to solve this problem. The first optimization approach is muitipiex, which is based on the simpiex
method for single objective optimization. Other used approach is an interior point method, which is proved to be an
efficient linear programming technique. Finally, it is applied an evolutionary algorithm, namely the elitist non-dominated
sorting genetic algorithm (NSGA I1), which is considered a very attractive heuristic method. Formulation of the multiobjective
optimization problem is based on a multivariate regression model, which is built using experimental data from a full-scale
UASB reactor, at CETESB, in Sao Paulo City, Brazil. Obtained opfimization solutions are compared and discussed.

Keywords: UASB reactor, Wastewater treatment, Multiobjective optimization, Multiplex, Interior-point methods, Genetic
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I. INTRODUCTION

The development of new types of non-
conventional bioreactors, has led anaerobic
processes to be more and more attractive
(Kalogo and Verstraete, 1999). Such
reactors make possible a reasonable
efficient treatment of domestic and industrial
wastewaters associated with a low
investment and operational costs and the low
sludge production and space required by the
system. With this improvement, the
anaerobic digestion has been used as a pre-
treatment, mainly in effluents with high
organic matter concentration. Among the
non-conventional reactors highlights the
upflow anaerobic sludge blanket (UASB)
reactor, developed in The Netherlands for
treatment of industrial wastewater (Lettinga
et al., 1980). In Brazil, the adaptation of
UASB technology to treat domestic
wastewater has been studied at CETESB
by Vieira and Garcia (1992) and Vieira et al.
(1994). Today, UASB reactors are widely

used in Europe, the US and Japan for the
pre-treatment of wastewater predominantly
derived from processing industries.

In an UASB reactor, it is interesting to
implement a biogas recovery system and to
utilize it as a supplementary energy source
for thermal energy loads and the electricity
generation. As it is known, biogas is mainly
composed of methane (CH,) and carbon
dioxide ( CO, ) and trace levels of other gases
such as hydrogen ( H, ), carbon monoxide
(CO), nitrogen (N, ), oxygen (0O, ) and
hydrogen sulfide ( H, S ). Despite the studies
emphasized on energy management, the
energetic potential of methane is little utilized.
Inside of this context, the ENERG-BIOG
Project aims to analyze the use of biogas to
electricity generation in Brazil (Coelho et al.,
2005). For this purpose, the biogas has to be
produced in considerable quantity, but without
compromising the organic matter removal, so
that the biogas recovery is feasible. To get a
better compromise between both objectives,
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i.e. organic matter removal and biogas
production, multiobjective optimization tech-
nigues have to be applied.

As the present case, many real-life problems
involve multiple objectives that are often
conflicting and non-comparable. Using single
objective function optimization techniques do
not adequately solve such problems. Non-
comparable objectives are associated io
multiobjective optimization problems that
represent a trade-off among objectives and
whose solutions are named as Pareto optimal
solutions (Bhaskar et al, 2000). For instance,
Videla et al. {1990) used multiobjective
optimization to find a Pareto optimal solution
to design operational parameters of anaerobic
digesters to treat leachates. In this case, the
optimization problem consists in maximizing
net biogas production, maximizing chemical
oxygen demand (COD) removal and
minimizing costs. Another example is given
in Giric et al. {1994). They presented an
approach for determining the sensitivity: of
maximum net profits to uncertainty in the
waste treatment costs in a chemical process.

There are several multiobjective optimization
techniques. Interesting surveys are provided
by Andersson {2000) and Marler and Arora
(2004). Ignizio and Cavalier (1994) introduced
linear pragramming (LP) models to deal with
multiobjective optimization and to find an
optimal solution. This method named multiplex
is derived from the simplex method for the
optimization of a single objective function. In
contrast 1o the simplex method, which moves
toward a solution on the vertices of the
constraint polytope, interior-point (IP) methods
move toward the solution through the interior
of the polytope (Potra and Wright, 2000).
Karmarkar (1984) demonsirated the
computational efficiency of IP methods for LP,
reporting solution times up 50 times faster than
the simplex method. While activity in IP
methods for single objective linear optimization
problems has reported thousands of research
papers, very little has been done to apply this
algorithm to multiobjective linear programming
{(MOLP) problems. Some attempts related to
this topic are the works of Arbel (1997) and
Trafalis and Alkahiani (1999).

On the other hand, evolutionary algorithm are
becoming an alternative approach to the
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classical optimization methods because they
permit to work with great search spaces, can
generate the best compromise solution
among several objectives in an unigue run
and they do not need extra information, as
the function derivative. Evolutionary
algorithms refer to a class of optimization
methods that simulate the natural evolution
principle to drive the search in direction to
an optimal solution. Among the several
multiobjective evolutionary algorithms have
been reported in the literature, it can be
mentioned the multiobjective genetic
algorithm (MOGA) by Fonseca and Fleming
(1993) and the non-dominated sorting
genetic algorithm (NSGA) by Srinivas and
Deb (1994). Deb et al (2002) proposed the
elitist non-dominated sorting genetic
algorithm (NSGA Il) with the purpose to
alleviate three principal criticisms of the
NSGA: computational complexity, non-elitist
approach and the need of specifying a
sharing parameter.

In this paper, three optimization algorithms,
namely multiplex, P method and NSGA H are
used aiming to solve the multiobjective
operation of a full-scale UASB reactor, i.e. ¢
maximize both biogas production and organic
matter removal. Multiobjective optimization
applied to UASB reactors is rare in the
literature. In the present case, formulation of
the optimization problem is based on a
multivariate regression model, which is
developed using experimental data from the
reactor. This multivariate regression approach
is appropriate to deal with highly correlated
data, as it is the case of this wastewater
freatment process. The paper is organized
as follows. Section 2 describes the UASB
reactor. In section 3, the multiobjective
optimization problem is formulated. Section
4 presents the problem solution using
multiplex. Section 5 discusses the
optimization solution by IP method meanwhile
optimal solution through the NSGA I
algorithm is presented in section 6. Finally,
conclusions are explained in section 7.

Il. THE UASB REACTOR

This paper considers the process studied by
Vieira and Garcia (1992) and Vieira et al.
(1994). It is a 120 m® UASB reactor to treat
raw domestic wastewater, which was
designed and installed at CETESB, located



Rev. Per. Quim. Ing. Quim. Vol. 10 N° 1, 2007.

Raw

sewage ﬂ o
Bar Grit
Screem Chamber

Pags. 39-49

79m .

Effluent

Figure N° 1. Layout of the UASB reactor

in Sao Paulo, SP, Brazil. This reactor was fed
with sewage collected by the Pinheiros
wastewater treatment plant of SABESP (Basic
Sanitation Company of S840 Paulo State), and
it is capable to attend a population of about
4000 habitants. A simplified schematic
diagram of the UASB reactor and its main
dimensicns are shown in figure N° 1.

The reactor is built of carbon steel, internally

lined with epoxy paint. It consists of a’

cylindrical tank with a frustum conical settler
at its top to separate solids, and a gas
deflector to carry the gas to the central cover
of the digester. In this system, sewage passes
though a sieve and a grit chamber before
entering the UASB reactor. At the top of the
digester there is a chamber to receive the
sewage and distribute it through 12 tubes to
the bottom of the reactor. Of this way the
sewage is uniformly distributed at the bottom
and travels upward through the digester and
sludge bed that is formed within. The treated
effluent is collected in channels at the top of
the reactor.

The sludge is periodically removed from the
bottom by means of pipes, which reach the
center of the reactor. There are six sludge
sampling points verticaily distributed along the
reactor. The gases produced are carried to
the central dome and then through tubes to
the burner after first passing through a gas
flow meter.

In this process, for a hydraulic retention time
(HRT) range of 4 to 15 hours, it was found
that the organic removal efficiency did not vary
appreciably, having maintained a value of

about 60% for chemical oxygen demand
(COD), 70% for biochemical oxygen demand
(BCD) and 70% for total suspended solids
(TSS), with effluent quality varying between
20 to 300 mg COD/l and 10 to 200 mg BOD/
I, with 50 mg TSS/i on average and biogas
production varying from 0.008 to 1 Nm%m3.d,
which is approximately composed of 70%,
9%, 20% and 1%.

Table N° 1. Variables used for PLS modelling

Variable Tag
Biogas production (Nm*/m®.d) Ve
Total effluent COD (mg/l) Y3
Hydraulic retention time (h) Xo
Ambient temperature (°C) X4
Feed total COD (mg/l) Xy
Feed soluble COD (mg/l) Xe
Feed total BOD (mg/l) X7
Feed TSS (mg/l) Xs

Ill. FORMULATION OF THE
OPTIMIZATION PROBLEM

In this work, the operation of the UASE reactor
aims to maximize both biogas production and
organic matter removal (COD). The first step
to formulate this multiobjective problem is to
obtain a mathematical model of the process.
Here, experimental data from the UASB
reactor is used to identify a process model
based on multivariate statistical methods.
Partial least squares (PLS) and principal
component analysis (PCA) were applied by
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Figure N° 2. UASB identification results: experimental data (-----), PLS model (—)

Teppola et al. (1997) and Tomita et al. (2002)
in actlvated sludge processes, respectively.
in the present case, itis used PLS regression
modelling technigue. The variables used for
PLS modelling of the UASB reactor are listed
in Table 1.

For a better process identification, the raw
data set is normalized by subtracting the
mean and by dividing by the standard
deviation. Using the Matlab Chemometrics
toolbox (Kramer, 1993), linear PLS models
with six latent structures for the UASB reactor
are obtained as follows:

¥, =-0.5659x, +0.2772x, +0.0657 x;
+0.1999x, +0.1257x, —0.0853x, ™M

v, =-0.2853x, —0.2435x, +0.3964x,
+0.2836x, —0.1146x, +0.0467x, @

The mean squared error of estimation (MSEE)
is used as performance index to evaluate the
adequacy of the identified models. The MSEE
index for models (1) and (2) is 0.6906 and
0.5770, respectively. Figure N° 2 shows the
. outputs generated by the PLS models. As it
can be observed, these models are ably to
reproduce reasonably well the process and,
therefore, they are well suited for optimization
applications.

Using the PLS models, the multiobjective
optimization problem can be formulated as
maximization of biogas production ( y,) and
minimization of total effluent COD ( y, ), which
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can be mathematically expressed of the
following form (Tomita, 2004):

max y,

min y, @)

subject to:
~ld=x =17
—25<x, 7
—22<x. <18

Sie 2 (xsdfff + ;Cs )— }5
— ___xﬁ < -

1 3<E €24

Constraints (4) are derived from minimum and
maximum operahonal condltlons of the
reactor, where x; and d are the mean and
the standard deviation of the raw data set,
respectively, as shown in Tabie 2.

The solution of the above multiobjective
problem (3) subject to constraints (4) is soived
by using multiplex (Ignizio and Cavalier,
1994), IP method (Arbel, 1997) and NSGA |
algorithm (Deb et al., 2002). In the next
sections, these optimization algorithms are
briefly summarized, in order to facilitate its



Rev. Per. Quim. Ing. Quim. Vol. 10 N° 1, 2007. Pdgs. 39-49

x5 - Feed total COD x¢ - Feed soluble x7 - Feed total
(mg/1) COD (mg/L) BOD (mg/L)
Mean (X;) 330.80 132.96 201.44
Standard deviation
{di/z) 9733 "34.76 71.60

Table N° 2. Mean and standard deviation of the data set

comprehension and practical implementation
by the reader. All the optimization algorithms
are here implemented in Matlab™ platform
(MathWorks Inc., 2002).

IV. MULTIOBJECTIVE OPTIMIZATION
USING MULTIPLEX

The multiplex algorithm of Ignizio and
Cavalier (1994) solves a MOLP problem given

by:
lexmin ¢ = {c“’v,c‘z’v,...,c”‘)v

Subject to:

Av=>b

v=0 ®

c'®': vector of coefficients, or weights, of f -
th term of the achievement vector.

7l
v=|1
P

A: matrix of coefficients for the goal set
(priority order in the rows and coefficients x,7]
and P in the columns)

:vector of all structural and deviation variables.

b: right-hand side vector of the goal set

The multiplex considers that the first term of
vector u is minimized. After, the second term
is minimized without alter the result obtained
to the first term, and so on. The multiplex
algorithm is summarized to follow:
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- Otherwise, the basic variable
. associated with row p toleave the

~ base is that with lower ﬁ/a*
This varlable JS des;gnated as

-step_f_7 'Plvot Rep!ace a, in B by a and
S compute the new basis mverse
B return to step2 :

step 8: Convergence check. If e|ther (or
 both) of the following conditions
holds, terminate the program as the

~ solution has been found i

i } if aII d s as computed m step
- 3 are negatlve, or -

: )If k=K, in other words n‘ all
-_-elements of aohlevement are
determmed :

' Otherwrse check all nonbasrc
- variables associated with negative
~ values of d, ,set T K+l and

return to step 2. - 0

To apply the multiplex algorithm to the
problem (3)-{4), the decision variable vector
X must be positive, then firstly, let x to be a
new variable x'. For example:

se—ld=u 14 =-0=x 20
S

X2=lisswn-ld=ld=s =31

Now, considering that minimization of variable
¥, can be transformed in maximization of
— ¥5, the problem (3)-(4) can be reformulated
as:

[ ¥, =-0.5659(x, =1.4)+02772(x, =2.5)+0.0657(x, =2.2)

+0.1999(x; —2) +0.1257(x, —2) —0.0853(x, —1.3)
max

— v, =0.2853(x) — [ 4)+0.2435(x, —2.5)—0.3964(x; —2.2) (6)

—0.2836(x, —2)+0.1 146(x; —2) - 0.0467(x, ~1.3)
subject to:
o
S

X

[
A IA
[S]

S
h
A
ISR

-
ER

Xe—2.8004x; <1.5315 ]
x, —1.3593x, <0.8162
44

S )

x=20

Finally, the objective functions (6) can be
converted into a type Il {>) inequality
constraints by means of the aspiration level
value establishment (level that is desired and/
or acceptable). In this case, it is considered
» 23 and ¥y, =—Y, 23, Writing problem
(6)-(7) in the general form of ecuation (5), we
have that:

lexmin u :{(pl +0,+P3+ Py +Ps +pe)-{n7)’(ns)}

subject to:
m-p;=3.1
X, +n,—p, =45
% +1,—p, =4
o —2.8004x; +1], - p, =1.5315 @
x; —1.3993%. 9. — p. = 0.8162
Xy +T5 — Ps = 3.7

y, =—0.5659x, +0.2772x, +0.0657x, +0.1999x, +0.1257x,
~0.0853x, +73, — p, =3.5856
—y, =0.2853x, +0.2435x, —0.3964x, —0.2836x, +0.1146x,
~0.0467x, +11, - p, =3.7374

The solution of problem (8) by multiplex, after
G-iterations, is given by:

£ =[17 2 22 -2 -1.1838--13f
which corresponds tc the point
A=(-0.9898, 2.3361) of the objective

space in figure N° 3
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Figure N° 3. UASB optimization using multiplex
method
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V. MULTIOBJECTIVE OPTIMIZATION
USING INTERIOR-POINT METHOD

Considers the following MOLP problem:

max ¢ x
max. ¢ x , .
. I<isg = max Cx

(9

max cjx
subject to:
Ax=bh
=0

To solve this problem, Arbel (1997) proposed
the self-scaling path-following primal IP
algorithm which is summarized below:

stepO Fmd the |n|ta [ sei o”efhcte"”
o anehdr pomt by solving
. setof g smg -obje-c

' f-probiems, by usmg the

: “‘*method

-steb.,..l
_'fjfeasrbte solutlon and p
inmai step-szze faci '

Pdgs. 39-49

In problem (3)-(4), we start the solution process
by transforming the variables x to x' and by
obtaining two (efficient) anchor points. For this
purpose, it is constructed the weighted

objective functions J, =0.96y, —0.04y, and
J, =0.04y, —0.96y,. The solution of these
single-objective LP probiems is given the
anchor points x,,,, =[0 4.5 4.0 12.73 6.25 o1
and x,,,=[3.14.500 0.8162 0], which
represent the points D=(4.2560,-3.1217) and
A=(-0.9898, 2.3361) in non-dominated set of
the objective space, respectively, as shown in

figure N° 4

For only two objectives we prefer to use an
utility function rather than using the AHP as
DM. Assuming an utility function u = x,.x, / X,
and the initial inferior feasible solution pomt
L=[111117, p0=095andy=0.75,the
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optimal solution, after 13-iterations, is given
by x,, =[3.1 4.5 0 0 0.8162 01" with ; = 17.0893,
this solution also can be expressed by

X =[1.7 2 22 -2 —1.1838 —1.3]" with
u #2 8721. As it can be observed in figure

N°® 4, this result corresponds to the point A (in
this case the optimal solution represents a
vertices in the constraint polytope), which is
the same as obtained by the multiplex
method.
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Figure N° 4. UASB optimization using |P method

VI. MULTIOBJECTIVE OPTIMIZATION
USING GENETIC ALGORITHMS

Consider the following multiobjective
nonlinear programming:

max " £(x)]

max f,(x
praled =i

(i)

max £, (x)

subject to:

g(x)=0

h(x)=0

S

Problem (10) can be solved by using the
NSGA Il algorithm proposed by Deb et al.

(2002). The steps of this algorithm is
summarized as follows:
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:':Evaluate the ob;ectlve functaons’
- and constraints. And c!assnfy the
:olu’ztons into dlfferent fronts, by;\

this _comp_arlson flrst!y, th_e
“constraints are considered. If a
solution  violates the constraints
~and solution j does not violates,
“solution j will enter in the front
{p') and it is removed of F,. If
joth solutions are feaSibie i ahd
enter in the front ( p') and they
re removed of P Otherwise, if
oth solutions are infeasible, the'z_
fitness values of these solutions
_are compared based on non
~domination. The non-dominated
~ solution will enter in the front { p* ).
. Repeat this procedure for all
- solutions in P,. p' constitutes the
irst front of non-dominated
solutions and it is assigned with
_5§frank e Create subsequent
_'fronts usmg the soiut:ons remainlng}
.m F-' ' o .

. "_step 6' Evaluate the crowdmg dlstance d i
. .'_that is a measure of the search
- space around solution ; whichis not
“oceupied by any other solution in the.
""pcpuiation For each objective

unction 1 , rearrange all solutions
. _-fmnt F ln ascendmg erder of

arge d:stance fi o) the boundary.
mmi_m_um _an_d maximum)'-solutlons
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~ andforall other solutions ; -

= {1 1)(l:sthenumbgrof80 txo .

in the front), assign:
fIH-l f)'.!——l

d +oE

=d

I {i

This helps maintain d;vers;ty m thef

Pareto set.

step 7: Selection of the ‘solUti&ins to 'formf
offspring popuiatton Select any
pair of solutions, f;‘i' and S E

randomly, irrespective of a‘fonts .
Identify the better of these two;
solutions by using the crowded
tournament seiectlon The first
in terms afj
dominance (be!ong or not to the

. same non-dominated front). If

- solution ; has a better (lower)
 rank than j, i ischosento enter
L ‘j,in the offsprin’g population. If

' comparlson

e i same rank {non-dommated fmnt)
~ the solution that has better (higher)
~ crowding distance is chosen.. In;
~ other words, solution ; wins a
‘tournament with another solution j

~ ifanyof the following conditions are

- true: (i) if solution ; has a better

' mn:k 7, < r; (ii) if they have the

~ same mnk but solution / has a

 better crowding distance than
-'solutzon g that IS, n ‘"r and';

__the solutions in O En our

lmp!ementatlon we use the
- simulated binary crossover (SBX)
- (Deb, 2000): for reaf coded;

varlables

'sl‘e_p g Mutation. Carry qut mutahon of the;
cx o salutions Sin 20 In o

,.mplementauon, we use the

for real coded vanabies

-ifstep 10-Evaluate the objectwe functionsf
. and constramts for offsprmgﬂ

popuiatlon Q

_step11 The parent and offsprmg?
o poputatlons are combmed to form;

polynomial mutation (Deb 2000}:

f'_.member of thts front is chpsen *:0'?
o 3form the nexi populatlon P .The

be accommodated wcu!d be iarger':

- !han the Dopuiatfan size. ‘To cheoseﬁ

g . .__g ’the crawdmgj'
distance comparlson opera'ter (as
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Figure N° 5. UASB optimization using NSGA Il method

In the application of the NSGA Il to the
problem (3)-(4), it is considered a population
size of 50 solutions and the final solution
should be obtained at the end of 60
generations. Are used a crossover probability
of P.=0.9 and a mutation probability of
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P, =0.1. The distribution index to crossover

and mutation are set as 77, =100 and
n, =1, respectively.

In this case it is obtained a set of Pareto
solutions as shown in figure N° 5. Once a set
of trade-off solutions is found, the DM can
make a choice of the “best” solution by using
high-level qualitative information. If the DM
gives more importance to COD removal, the
point A is chosen, as in previous results
presented in sections 4 and 5; otherwise, if
biogas production is more important than
COD removal, then point D is chosen. On the
other hand, if both objectives are equally
important, any point among poinits B and C
can be selected.

Vil. CONCLUSIONS

In this paper we are interested in testing
different optimization methods for the
muiltiobjective operation of a full-scale UASB
reactor. The problem formulation is based on
a PLS regression model, which was ably to
represent reasonably well the process.

The multiplex method is relatively easy to
handle, but it presents limitations when we
need to automate the procedures. In the IP
method, the calculation procedure is more
automated than the first one. Also, it is
promising to be used when we have to solve
problems with major numbers of objectives.
Both methods, multiplex and IP method, give
us the point A of the objective space as the
only optimal solution instead of a set of
Pareto solutions. In terms of original physical
_ variables, this optimal solution represents
the following operational conditions for the
UASB reactor: hydraulic retention
time=11.05h, temperature=30°C, feed iotal
COD=117 mg/|, feed soluble COD=63mg/l,
feed total BOD=117mg/l and feed
TSS=39mg/l. Under these conditions, it is
possible to obtain biogas production of
0.079Nm®m3.d and total effluent COD of
25mg/l.

On the other hand, if we want to obtain a set
of n non-dominated solutions, it is
necessary to run multiplex or IP method #
times by using different user-defined
parameters. The solution obtained of this
manner is not the optimal solution of each
individual objective. It is a better compromise
solution, which is influenced by weights that
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express the relative importance of each goal.
In the case of the NSGA II, it give us the set
of trade-off solutions {(point A inciuded) in
one single simulation run, which makes this
algorithm to be an ideal candidate for solving
multiobjective optimization problems. The
results obtained demonstrated that by
selecting any operation point among points
B and C of the objective space, the UASB
reactor can be effectively used to accomplish
appropriate biogas production and organic
matter removal. For instance, choosing point
B represents the following setting for the
UASB reactor: hydraulic retention
time=4.13h, temperature=30°C, feed total
COD=117mg/l, feed solubie COD=63 mg/i,
feed total BOD=117mg/l and feed
TSS=39mg/l. Thus, are obtained biogas
production of 0.1629Nm?¥m3.d and total
effluent COD of 38mg/l.
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