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Abstract 

This paper deals with the model re-identification in closed-loop systems with already existing MPC controllers. lt is assumed 

that the controller has a two-layer structure where the upper !ayer performs a simplified economic optimization in which the 

economic objectivl is represented as a linear combination of the process inputs. This is the case of severa! commercial MPC 

packages applied in industry. This work focuses on the case where the existing process model shows signs of deterioration 
and there is benefit in obtaining a new model. lt is proposed a methodology where the test signa! is introduced in the 

coefficients of the objective function of the economic !ayer. The approach allows the continuous operation of the system 

as the process constraints and product specification can be satisfied during the test. The application oí the method is 
illustrated by simulation on a C3/C4 splitter of the oil industry. The method is simple to be implemented in existing commerc1al 

packages, and the results show that tne method has a good potential to be applied in practice. 

Keywords : Closed-loop identification, model predictive control, model maintenance, control performance assessment, 

distillation column. 

l. INTRODUCTION 

Model predictive control (MPC) strategies have 
become the dominant approach in advanced 
process control applications (Qin & Badgwell, 
2003). Return on investment and substantial 
benefits are generated directly from the ability 
of MPC to ensure that the plant operates at 
its most profitable constraints. One of the key 
elements of MPC is the process model. which 
is used to predict the future behavior of the 
system output along a prediction horizon that 
is long enough to encompass all the process 
dynamics that need to be taken into account 
in the computation of the control law. Thus, 
it becomes clear that a poor process model 
may result in poor output predictions, and a 
decrease in the control performance, which may 
jeopardize the economic benefits associated to 
the control strategy. Consequently, an accurate 
model is a key factor in the performance of the 
MPC controller. 

In general, from 2to3 years aftercommissioning, 
these controllers rarely keep performing as 
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they were initially designed (Treiber et al., 
2003). The main cause of the performance 
deterioration of MPC is related to the model 
deterioration resu lting from changes in the 
dynamic behavior of the plant or persistent 
unmeasured disturbances that force the plant 
to a different operating point. Changes in the 
dynamics of the plant may result from wearing , 
fouling, catalyst decay, etc. or changes in the 
operating conditions or product specifications. 
Usual disturbances include the environment 
temperature, variations on the feedstock 
impurities or operating problems in an 
upstream process. Minor disturbances include 
process and instrumentation noises, which are 
always present up to a limited level. In general , 
the above listed problems intensify w ith time 
and tend to accentuate the plant/model error, 
leading to a significant degradation in the 
performance of the control system. In order to 
keep the performance of the MPC controller at 
an acceptable leve!, it is essentíal to carry out 
the MPC re-commissioning in a periodic basis, 
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which means to re-identify the process model 
and, if necessary, to retune the MPC controller 
considering the new mode!. However, due to 
the plant commitment to production goals, 
model re-identification means, in most cases, 
to develop a new model based on plant data 
obtained in closed-loop conditions. 

Closed-loop identification is a research 
subject with growing interest in the last decade 
(Hjalmarsson et al. , 1996; Forssell & Ljung, 
1999a; Landau, 2001 ). lmportant aspects on 
model identification have been studied and 
several identification strategies have been 
proposed. Production goals and safety aspects 
are thetusual incentives to research in closed­
loop identification in order to build a model 
that is relevant to process control (Landau, 
2001 ). As the controller diminishes the effects 
of disturbances and keeps the process within 
the designed operating ranges, the resulting 
process data can generate more reliable 
models without significant uncertainties. In 
general, closed loop identification reduces the 
problem of gain directionality as the controller 
introduces the necessary correlation between 
the inputs in order to excite the outputs in 
the adequate magnitudes and directions 
(Andersen & Kümmel, 1992; Li & Lee, 1996). 
However, the correlation between the inputs, 
and the significant correlation between inputs 
and outputs become the fundamental problem 
in the closed-loop identification procedure , as 
these correlations may result in systematic 
error or biab in the estimated parameters. 
Moreover, the inherent reduction of the 
excitation signa! resulting from the presence of 
the controller may result in a poor signal/noise 
relation, which may produce random error and 
a significant variance in the model parameters . 
Despite these disadvantages, the closed-loop 
identification is carrying a lot of attention in 
the last years and it has been considered a 
serious alternative to the controller retrofitting 
when the error plant/model is significant. 

Ali closed -loop identifícation can be classifíed 
as direct, indirect or joint input-output methods 
(Ljung, í 999a). Both indirect and joint input­
output methods require prior knowledge of the 
controller or assume that it has a certain L TI 
structure. Obviously, these methods are not 
suitable for MPC applications, because MPC 
presents nonlinear and time-variant features. 
For this sort of control strategy, the direct 
method is the recommended choice for closed-

loop identification (Rivera & Flores, 1999; 
Zhu & Butoyi, 2002). Sorne works have used 
the indirect and the two-stage identification 
methods, a variant of joint input-output 
method, ín unconstrained MPC systems, e.g. 
see Saffer & Doyle (2002). Unconstrained 
MPC is basically a LTI controller, but it is very 
little used in industry because it does not 
offer the economic benefits associated to its 
constrained counterpart. 

In closed-loop identification, theoretical studies 
show that, in order to achieve necessary and 
sufficient conditions for process identifiability, 
an externa! excitation signa! is required 
(Gustavsson et al., 1977). The externa! 
excitation signa! should be persistently 
exciting across the frequency range of interest 
(Godfrey, 1993), and must be independent of 
any process disturbance. In MPC systems. 
externa! excitation is a dither signal that can 
be injected in the manipulated variables (e.g. 
Kline et al., 2006) or in the controlled variable 
set-points (e.g. de Klerk & Craig, 2003) or 
both . The main disadvantage of this approach 
is that there is no guarantee that the process 
constraints and product specifications will 
be attended during the execution of the 
identification test. On the other hand, an 
insufficient excitation may compromise the 
identification requirements. To tace these 
problems, sorne authors have proposed a new 
class of excitation methods for MPC that can 
be called as internal excitation methods. They 
are either based on an adequate modification 
of the objective function of the controller 
or through the inclusion of an excitation 
constraint. Sagias & Nikolaou (2001 ) propose 
the extension of the cost function of the 
conventional MPC to address both control 
and identification objectives. The approach 
considers injection of a dither signa! into the 
new cost function trying to force a predefined 
sequence of moves on the manipulated 
inputs. With this strategy, the control problem 
remains a OP, i.e. no new optimization code is 
needed. Genceli & Nikolaou (1996) propose 
the MPCI (model predictive control and 
identification) where the persistent excitation 
of the inputs is imposed as a constraint in the 
control optimization problem. The resulting 
problem is no longer a OP and it is also non­
convex, which limits the practica! application 
of the method. Another crucial shortcoming of 
the MPCI approach is that they cannot easily 
applied to MPC packages already installed. 
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because they need sorne modifications on the 
code of the control program. This is certainly 
not available for most of the practitioners. 

The main goal of this work is to estabfish a 
general closed-loop identification methodology 
to be applied to commercial MPC packages, 
considering that the 

identification step must be performed in an 
industrial environment where production 
cannot be inte rrupted and the process opera­
tion must be kept inside an operating window 
defined by product specification and equipment 
constraints. 

11. THE ~OPOSED METHODOLOGY 

Most of the commercial MPC packages are 
implemented in a two-layer structure as 
represented in Figure Nº 1, with both layers 
executed with the same sampling period. The 
upper layer usuafly corresponds to a simplified 
steady state economic optimization, and the 
lower layer stands for a MPC algorithm in 
which the outputs are controlled in specified 
zones or ranges (Maciejowski, 2002) instead 
of fixed references. In the economic opti­
mization we search for the optimum steady 
state values of the system inputs (input 
targets). This is done by optimizing a linear or 
quadratic economic objective subject to bound 
constraints in the system inputs and outputs. 
The outputs at the optima! steady state are 
computed through a steady state linear model 
and using the available output prediction in the 
MPC algorithm. The optima! input targets are 
sent to the MPC algorithm. where the control 
cost is extended to include a term that weights 
the distance between the present value of the 
input and the optima! target. 

Economic 
Optimization 

lf\ ~ 

l(, /k) 
A 

V (k+n) 
U, 

\ lt . 

1 Ivf PC 

1 

Control ler 

Figure N° 1. Typical MPC layered slructure 
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A reasonable consideration is that when 
the process model is poor, the economic 
optimization layer wifl change the input target 
to the MPC layer quite often, and so, the input 
targets could be viewed as a possible test 
signa! in the closed-loop identification 

procedure. However, to assume that these 
natural moves on the input targets will be 
sufficiently exciting is a questionable matter. 

Taking advantage of the MPC layered structure 
(Figure N° 1 ), and in order to guarantee the 
necessary excitation of the process, which we are 
trying to re-identify, we propase a method where 
the test signa! is introduced as a multiplier factor 
of the economic coefficients in the objective 
function of the economic optimization layer. 
For this purpose, the economic optimization 
problem is written as follows: 

min -(r,¡;í ®Werc)6u5 +llW~6u5 r~ - llW38y11: (1) 
!lu,.t>, -

subject to: 

6us = us - u01 

Ys = G 0b. u 5 + )) ( k + n I k) 

umin < us :S: umax 
(2) 

) ;
1 < J1 1 ó <v 1 

min - s 1 y - ~ max 

where: 

11
01 

vector of manipulated inputs at present 
time k 

u.. vector of targets of the manipulated 
inputs 

Y, vector of predicted outputs at steady state 

Jí(k-7-n!k) prediction of the controlled output 
at instant k - n (n is the model horizon 
or settling time of the dynamic process 
model) computed at time k . 

o vector of slack variables for the controlled 
·' outputs 

G
0 

steady state gain matrix of the process 

w, vector of economic coefficients of the 
manipulated inputs. which may be 
considered as the partial derivates of the 
true economic function in re lation to the 
inputs 

W
2 

matrix of weights of the manipulated input 
moves 
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W
3 

matrix of weights of the output slack 
variable 

W time-variant weighting vector of the 
m economic coefficients (persístentfy exciting 

test signa Is) 

u..,;,; u""'' bounds of the manípulated ínputs 
(the same as used in the control !ayer) 

v ' . v bounds of the controlled outputs 
mm - mt1' 

(which zones can be smaller than or equal 
to the ones used in the MPC layer) 

In Equation (1 ), operator ® denotes the 
Hadamard ( or Schur) product. On the above 
equatiqns, the slack variable is included 
to guarantee existence of a solutíon to the 
optimization problem defined in (1) and (2). lf 
~:"' is set equal to a time-invariant vector of 
ones, the excitation procedure is ended and 
we have the original economic optimization 
problem. 

As a result of the solution to the problem defined 
in (1) and (2), we obtain the input target u, that 
is passed to the MPC layer, which solves the 
following QP: 

p ' 

mio ¿]Q V' (k + i I k ) - Ysp )I~ 
~ ~1 -

m 11 ? + L R6.u (k + j - 11 q¡; 
¡=l (3) 

+ t i~, [u ur + t !::.. u ( k + i - 11 k ) - u_, ] ¡

12 

¡=I. 1=1 2 

subject to: 

-611"'ª' ~t:,.u (J.: + j-lí k ):S.3.umax• J=l,. .. ,m 

< ' ~A (l·..L '- j / 1·)< ·- ¡ (4) 11111¡0 _!101 1L.., :.J.l/11. 1 11. _umax · J - , .. .,m 
i=I 

where: 

y output predictions 

r set-point of the system output 
. 'I' 

~ vector of control moves 

m control horizon 

p prediction horizon 

Q díagonal weight matrix of the controlled 
outputs 

R diagonal weight of matríx of the 
manípulated inputs 

R,, diagonal rnatrix that weights the 
distance between the computed input 
and the optimum target. 

I""... thís controller, the zone control strategy is 
implemented as follows. For each output v., 
we observe the prediction at tíme instant k+i. 
We may have the following cases: 

(a) Yj,min < )Jj (k + i/ k ) < Yj,max 

In this case. the error on this output at time 
instant k+i can be ignored by the controller. 
This means that weíght Q should be made 
equal to zero and the set-point can assurne 
any value. 

(b) Yj (k + i) > Yj,max 

In this case, the controller should bring the 
output back to the upper boundary of the 
control zone. Then, we should select the output 
set point such that Yj.<p = .•}.mm' and weight Q 
should be made equal to the value obtained in 
the controller tuning procedure. 

(c) Analogously, if y j ( k + i) < Y J.min 

then, this output should be brought back to the 
lower boundary of the control zone. In thís case 
we make y. =y and weight O is selected as 

;.sp J.mm -

ín the previous case. 

The proposed rnethod to excite the system 
in closed-loop can be consídered as an 
interna! excitation method, and it can be easily 
implernented in existing MPC packages. Each 
test signa! ís designed with a different shape, 
such that the cross-correlation between the 
inputs is rninimized . We will show, in the 
example section, that, with this approach, 
the inputs can be adequately excíted, the 
feedback effect on the test data is minirnized 
and the requirements about the test signal 
for the system to be identifiable are reached. 
Also the approach attends the process safety 
requirernents and the specifications of the 
products are attended satisfactorily. 

The other steps of the proposed methodology 
follow same steps of the identification 
methodology that is usually applíed to 
índustrial processes (ljung, 1999a): design of 
the test signal, selection of the model structure, 
computatíon of the model parameters and 
model validation. The development of each of 
these steps is íllustrated in the case study of 
closed -loop identification that is presented in 
the next section. 

59 



Rc1·. Pcr. Quím. Jng. Quím. Vol. JO N° 2, 2007. Pags. 56-69 · 

' 

:·\V r - - - - -~ 1 T-01 

t'~!I -~ 
1 E...O 
1 
1 
l. 

1 

® 

-------.l 

~· l.:,L\.. ------, 
l.,!/ ' 

® 
¡ 
1 

PRJPANE1 ... 

1 

1 
1 

1 

<P ~ANE I 
Figure N° 2. Schematic díagram of the C3/C4 splitter 

111. CASE-STUDY: INDUSTRIAL C3/C4 SPLITTER 

This work considers the process studied by Porfirio et al. (2003). lt is a distillation column of the fluid 
catalytic cracking unit at the Petrobras's Presidente Bernardes Refinery of Cubatao (RPBC), Brazil. 
In this process, the C3 stream (propane and propene) is separated from a C4 stream (butane, 
butene and other hydrocarbons with four atoms of carbon). A schematic diagram of the distillation 
column with sorne of the regulatory control loop (PID) is shown in Figure Nº 2. 

In Figure Nº 2, T-01 is the distillation column, E stands for heat exchanger and V designates a 
process vessel. The feed stream is liquefied petroleum gas (LPG), which comes from the top of a 
debutanizer column that separates the LPG from gasoline. The C3 stream is produced as the top 
stream of the distillaiion column and the C4 stream ís produced as the bottom stream of the column. 
Al 1 and Al2 are analyzers that infer the contents of C4 in the propane stream and the contents of 
C3 in the butane stream, respectively. 

This process is controlled by a commercial MPC package as detailed in section 2. The output 
variables y

1 
and y

2 
are the temperature (T1 ) at the first stage of the top section of the distillation 

column and the percentage of C3 (A12 ) in the bottom stream, respectively. The input variables u
1 
and 

11
2 
are the flowrate (F3) of hot oil to the reboiler and the reflux flowrate (F2) to the top of the column, 

respectively. 

In this study, based on Porfirio et al (2003), it is assumed that the "real" process and the "old" 
process model (as used in the MPC system) are given by: 

Real process: 

(0.7413e-4)s - (l.452e-3) - ls l 
-----------~e 

s 2 + 2.6987 s + 0.4023 

(-0.3e-3)s+(0.2e - 2) -ls 
----------e 

s2 + 2.4298s + 0.065 l 

(5) 

(-2.218e-4)s+(5.656e-4) -ls 
2 e 

Gp = s + 3.4948s + 0.5902 

(- 1.135e- 3)s - (J.235e-3) _15 -------- ----e . 
s2 + l .6380s + 0.09852 

60 



~-

' 

1 
t 

f 
i 

L. 

Rcv. Pcr. Quím. lng. Quim. Vol. JO N° 2, 2007. Pags. 56-69 

Old process model: 

Gm = 

(O. 4 22 7 e - 4) s ..L (O .1 094e - 4) - Is 
-'--~~~~-'--~-'-~~~~- e 

s 2 + 0.1090s + 0.0243 

(-0.0873e-3)s - (0.1116e-3) -Is 
~~~~~~~~~~~~~e 

s2 +0.1317s + 0.0073 

The main parameters of the controller are 
taken from Porfirio et al. (2003). Other tuning 
parameters are: R,,=diag[10,1 0], W,=[500,-
500], W

1 
=diag[200,200J. W

3 
=diag[1000, 1000], 

u
111111

=diagf2800, 1500), uma.r =diag[3250,2000J, 
y '

111 111
=di<J5[0.80,48.25}, y 'nia.T =diag[0.95,49.75]. 

The sampling time is6t=1 . As it can be noted 
from the input and 

output bounds, the operating window of the 
C3/C4 splitter is quite narrow, which is a 
characteristic of high-purity distillation systems. 

3.1 Test signal design and generation of 
the dataset 

The design of the test signal plays a major role 
in the excitation and identification procedures 
of the process system. In the closed loop 
identification strategy proposed here, the 
purpose is to design a persistently exciting test 
signal that produces a persistent excitation of 
the process input. 

One of the persistently exciting test signals 
most used in industrial practice is the pseudo­
random binary sequence (PRBS) (Godfrey, 
1993). The energy content of this signal is 
distributed uniformly over the entire frequency 
range. However, in many situations, as the 
present one, we are interested in a particular 
frequency (or frequency range) other than 
the broad spectrum. The generalized binary 
noise (GBN) proposed by Tulleken (1990) has 
a similar approach as the PRBS except an 
additional parameter related to the switching 
probability. This allows manipulatiOfl of the 
power spectrum of the test signal , such that 
most energy can be concentrated in the low­
frequency range. Another advantage of GBN 
is that the signa! length is flexible and it has a 
mínimum crest factor. Due to these facilities , 
GBN is considered as the most suitable signa! 
for contro!-relevant identification of industrial 
processes (Zhu, 2001 ). 

Based on guidelines provided by Zhu (2001) 
and a priori knowledge of the process (Gm), 
two independent GBN signals of magnitude 

(-1.2055e-4)s- (0.03824e-3) - ls 
e 

s 2 +0.1342s+O.Ol11 

(1.3e-3)s+(0.7e-2) -Is 
~~~~~-'-~~-'-e 

s 2 + 2.2605s + 0.1366 

(6) 

±1 with mean switching times set to 29.4 
and 26.13min, respectively, are applied to 
the system simultaneously as indicated in 
section 11. The duration of the excitation test 
is 4500min, resulting 4500 samples of input­
output data, which are shown in Figure Nº 3. 

(b) 

Figure Nº 4. (a) power spectrum of the inputs, (b) 
excitation of output gain directions. 

As can be seen in Figure Nº 3, the excitation 
signa! that was introduced in the distillation 
column did not compromise the operating 
objectives, as both the inputs and outputs were 
inside the respective boundaries. The strategy 
of the zone control minimizes the feedback 
effect on the identification data, because 
during most of the time of the test, the control 
action aiming at controlling the outputs was 
not activated . With this strategy the closed­
loop identification procedure approaches the 
open-loop direct rnethod procedure, which 
ignores the presence of the controller. 
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Figure N° 3. Input and output datase! of the C3/C4 splitter 

As usual, in any model identification procedure, the simulation data represented in Figure Nº 3 should 
be normalized in order to make the inputs and outputs of the system equally important. This is done 
by subtracting from each input and output its computed mean and dividing the result by the standard 
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deviation of that variable. Linear trends were 
also removed. Finally, the dataset is filtered 
with a low pass filter aiming to concentrate the 
identifícation results in the frequency range of 
interest. A portion of this dataset (first 3000 
samples) is used for identification purposes 
and another part (remaining 1500 samples) to 
subsequently val idate the estimated models. 

ío verify the quality of the identification dataset, 
Figure Nº 4 presents the power spectrum of 
the inputs. The selected part of the spectrum 
(w .. w·) indicates the desired frequency range 
where the model will be identified. In fact, a good 
model in the low and mid frequency ranges is 
essentictl for MPC control purposes (Gopaluni 
et al., 2003). Here, dips at frequencies outside 
of the indicated bandwidth and other high­
frequency contributions were not included in 
the identification procedure. Figure Nº 3 shows 
also that low and high output gain directions 
are well excited, allowing a good estímate in 
both directions. 

3.2 Model structure selection 

All identified models have certain bias (or 
deterministic error) and variance (or stochastic 
error). The best model is obtained by minimizing 
the total error. But, there is a tradeoff 

between both parts of the error. By using FIR 
models, bias error can be minimized (because 
of the reduced model structure and arder 
limitations) but it can result in higher variance 
due to the larger number of parameters. On 
the other hand, by using low-order parametric 
models. variance error is reduced but bias 
error is inevitably larger. 

In many industrial MPC controllers, the 
stochastic model is fixed a priori and the 'best 
approximate process model' within sorne 
chosen model structure needs to be estimated. 
In the present paper, it is considered that the 
process can be represented by MISO transfer 
function models, with the stochasfic model 
parameterized as unitary, of the following form: 

.í;(1.1, )-·tc,,(.1.,,.)(1 -0,.1)·< (1). 1 -, i. . .. n , (7) 

where G;..(s P) is the (j.i)," transfer function 
defined as: 

'" 
B (·) L¡,i.•.I" 

(;, .• ('· J' ' ·' )= -. ,_, -' = J.'' " • (8) "f .1.11 ' ::. l. ,, i.i '? 111 !·' 

..1 ¡.o (s) "'"""". h 
¿_,ti ¡ _,). ·\ 
j ,, 

u(t) is the input vector,)l(t,p) is the model output. 
ej.1 is the time-delay between the i,¡, input and 
the .i,;, output, <>(r) is the residual or total model 
error (bias plus variance ), n and n are the 

u \' 

number of inputs and outputs, respectively, 
and 

b
A bA A A mP · . ' ]T . = . . . . a a .. E~ 1" P.1 .1 l 1 .1.m 

1
,, ••• ; .1.0 J,i . ~11 . i _,)" .. 1 .1,0 

with p =n .. +m +1 , where n . and /11 .denotes the 
).1 ) .1 l.f /.1 /.1 ... 

denominator and numerator orders of Gjs,p ), 
,.. /.l 

respectively. Therefore. the parameter vector is 

-¡· T T '
1 

. p1xl . _ ~ 
Pj -PjJ ···Pj.nu J ElR ' PJ-L,;Pj,; (9) 

i =I 

3.3 identification procedure 

The goa! is to build a model as defined in 
Equation (7) based on closed-loop sampled 
data, focusing on the parameters of each 
transfer function G .(s,p, ) rather than on the 

).• ~· ' 

model error appearing in (7). The pure time-
delay e ' is supposed to be known a priori 
and to 6'e a multiple of the sampling time D.t. 
Several procedures have been proposed, 
which are developed as extensions of the 
existing procedures that deal with SISO 
systems and that allow the identification of 
transfer functions with a common denominator. 
This approach may not be realistic in severa! 
practica! applications. In this work, it is used 
the CONTSID toolbox (Garnier et al., 2006) 
that presents new methods in the time-domain 
to deal with processes described by MISO 
systems with severa! transfer functions with 
different denominators. 

The output-error (OE) method from the 
CONTSID toolbox is u sed to find the para meter 
vector p

1 
(9) fo r the C3/C4 splitter, with n,,=n,=2, 

11 =2 and /11 =1. The identífication is carried 
j.J J.I 

out off-line using the identification dataset and 
considering the values ofthe parameters ofthe 
old process model (6) as the initial estimation 
for the identification algorithm. The models are 
evaluated based on the following performance 
criteria: 

FIT = 1 00 x [' 1 - __ 1_1o_n_11_,_(.1-'· i_-_ . ....:i·1....:..· ) _ l 
11or111 (1•1 - m ean ( "J)) 

~ var (y . - }· . ) 
R~ - ] - ./ ./ 

T - ( ) var Y¡ 

(1 O) 

( 11 ) 
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where is the true system output and the model 
output. CoefficientF!Tindicates the percentage 
of the output variation that can be associated to 
the model, while coefficient R/ measures how 
well the model output explains the behavior of 
the system output, and this parameter will be 
close to 1 in low noise conditions. 

Simulation results of the new and old models 
are presented in Figure Nº 5. Performance 
indicators and visual inspection show that the 
new model matches much better the system 
outputs than the available model in the MPC 
package. Loss function and Akaike's final 
prediction error (FPE) associated to each new 
model are also shown. 

f 

3.4 Model validation 

Here, the goal is to confirm whether the 
obtained model is an accurate representation 
of the process and to provide a basis for 
possible re-identification. The models can 
be validated in a variety of ways. Residual 
correlation test, Bode frequency response , 
pole-zero plots and cross-validation are often 
used. Far the case of the C3/C4 splitter, we 
will discuss sorne aspects as model error 
modeling, step response, cross-validation and 
interaction analysis. 

3.4.1 Model error modelíng 

lt consists in building models that describe the 
dynamics relating the inputs to the residual, in 
order to verify, in the frequency domain, if any 
essential unmodeled dynamics are left. This 
idea has attracted much interest in the past 
decade, motivated by the linear robust control 
theory, and because ít provides more freedom 
in investigating the residuals than the classical 
residual correlation test (Ljung, 1999b ). 

From Equation (7), we can interpret the 
residual as: (1 2) 

:: ¡ t- P~ )= _v1 (r) - J', (! ,P; )= t Cj,; (s.p'j.; J'; (! - ei.J ) 
;=I 

where é;v (s,p' J is the model of the error 
/ .1 j · ~ 

corresponding to model G, (s,p ), with deno-
J·' J.1 

minator and numerator orders denoted by 
11' . and m" (n" .?.m" .>>n ) respectively, and 

j , 1 J.I J.I ).1 j.I 

para meter vector p". defined in a similar way 
1 

as in Equation (9). 

In this study, the equation-error (EE) method 
from the CONTSID toolbox is used to compute 
the parameter vector p" , with n" =m' . . =10. 

) j ,I j. 1 

This is performed using the residual as the 
output and the system inputs taken from the 
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identification dataset as the inputs. Figure N° 
6 shows the Bode plot of the models of the 
error and their confidence regions (3 standard 
deviation of the normal distribution ). As it can 
be observed, the new models G (s,p ) are 

"' J.' satisfactory within 99.6% probab1lity at the 
frequency range of interest. The new model is 
compared with the old model, which contains 
large uncertainties. 

3.4.2 Step response 

In the plant-friendly identification procedure fór 
MPC, step response is a logical approach for 
model validation. Figure Nº 7 shows the step 
response comparison between the old model 
and the new model. As it can be noted, the new 
model captures the steady-state gains and the 
time constants of the process correctly. This 
means that using the new model the "dynamic 
matrix'', which contains the step response 
coefficients corresponding to the inputs to the 
C3/C4 process, will be more successful than 
using the old model. 

3.4.3 Cross·validation 

lt is one of the most important and reveling 
tests for model validation. In this case, the 
validation dataset, which was not used in the 
identification procedure, is used to compare 
the model predictions. Cross-validation results 
from the old and new models and its respective 
performance indicators are presented in Figure 
N° 8. These results show that the new model 
reproduces almost perfectly the dominant 
dynamics of the C3/C4 system. 

3.4.4 lnteraction analysis 

As a final test, it is studied the interaction 
behavior of the C3/C4 models as a function of 
the frequency range in which we are interested. 
Here, we use the relative dynamic gain array 
number (RDGA-number) as an interaction 
measure, which is based on the Bristol's RGA, 
defined as (Skogestad & Postlethwaite, 1996): 

RDGA - number (Jw) = !IRDGA (Jw) -Ijlsum (13) 

where: 

RDGA(Jw) = G(Jw)@ (G(Jw/} (14) 

with (t) denoting the Moore-Penrose pseudo­
inverse. lf the RDGA-number is close to zero, 
~here is no interaction in the system (or it is 
neg ligible). 

'I' 
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As noticed in Figure Nº 9, the new model has 
almost the same RDGA-number profile as the 
C3/C4 true model, i.e. there is interaction in the 
whole frequency range of interest, which plays 
an important role in MPC control. The RDGA­
number of the old model revea Is less dynamic 
interaction than in the real plant. From medium 
to high frequencies, the interaction leve! 
corresponding to the old model decreases 
rapidly which may be inadequate for the 
purpose of multivariable control. 

IV. ASSESSMENT OF MPC 
PERFORMANCE BASED ON 

PREplCTABIUTY OF MODEL ERROR 

Severa! methods have been proposed tor 
MPC performance assessment (Sotomayor & 
Odloak, 2006). In this section. a methodology 
is proposed, which uses resu!ts frorn the 
cross-validation step. The method is based 
on Thornhill et al. (1999) that propase a 
method for evaluation of the regulatory control 
performance. However, instead of evaluating 
the controller behavior, the methodology is 
used to evaluate the model by analyzing the 
time series of the observed error and to verify 
the existence of a predictable pattern beyond 
the control horizon for each of the outputs of 
the rnodels. The comparison is performed in 
term of variances of the residues . 

The approach considers that if the MPC is to 
perform well , then its interna! model shouid be 
able to predict the output of the process along 
a prediction horizon p , i.e. the model error 
shou ld have no predictable components or ft 
should not be distinguishable from a random 
walk stochastic process after time instant h-p. 
Thus, the proposed methodology 

demands a method to make predictions of the 
error model p-steps ahead of the present time. 
Here, it is used an autoregressive time series 
model of the following form: (15) 

i¡ (í+ p )= a0 +a1:¡ (t)+a::¡ (r-1 )+ ... -La,,_.:1(1- n11 +1 ) 

where c(1) is the model error described in 
1 

Equation ( 12) n .. and is the order of the auto-
regressive model. Parameters a, in (15) can 
be fitted to a given dataset of n samples of the 
model error using a least squares fit procedure: 

(16) 

where: (1 7) 
i¡ [ i (1) : , (2) ~ i (11. ) : 1 

li :: j (2) ~j (3) f i (11. + 1 )' X.=' ) i: . : ! 
¡· 1 

:1 <¡(n- p-11. +I ) ::,(11- p - 11,. -'--~ ) ... c
1
(n-p )J 

The difference between the actual and predicted 

model errors is the residue r,y), which mean 

and variance provide relevant information regar­

ding the predictability ofthe model , orthe model 

behavior. 

Figure N° 9. RDGA-number plol for the C3/C4 splitter 

In the present application, the model error, 
the residue and the prediction of the model 
error of the old and new models are shown 
in Figure Nº 1 O, which are generated using 
the validation dataset and parameter values 
n,,=30 and 11=1 500 (although only the first 500 
points are plotted in Figure Nº 1 O). Parameter 
p is the same as used in the MPC controller. In 
general , the new model presents much smaller 
variability of the residues and. therefore, a 
superior performance than the current model 
used in the controller. Particularly, the majar 
variability of the residues of the old model 
corresponding to 

output y , indicates that it is a very poor model, as 
it was demonstrated by the results of the previous 
section. The methodology shown above can be 
used as a tool to decide the need or not of re­
identifying the model of the process. 

V. CONCLUSIONS 

In this work , it has been proposed a methodololy 
to re-identify the process model in a closed loop 
strategy for multivariable industrial processes, 
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which are controlled by MPC packages based 
on the two !ayer structure. The test signa! is 
introduced in the economic coefficients of 
objective function of the economic !ayer of the 
controller. The test signa! is then translated 
into optima! targets to the inputs of the system 
in the MPC algorithm, which uses the concept 
of zone control for the outputs. 

The proposed approach was tested by 
simulation in an industrial C3/C4 separation 
column. The results show that the proposed 
method is very promising in terms of future 
practica! application. The main feature of the 
method is that considerable time is saved in 
the identififation procedure, and manpower is 
reduced in a large extent because the algorithm 
can operated unattended for severa! days or 
weeks, preserving product specifications and 
without jeopardizing plant safety. 
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