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Abstract- Molecular networks may be considered as elastic fluids, the conformational abilities of which are
adecuately characterized with the aid of the model of a Van der Waals conformational gas with weak
interactions. The internal properties are submitted to the conditions of internal equilibrium, thus, having
their changes uniquely related to the global transformations of the network upon deformation. The global
properties are at least determining the limits of stability which are expressed in the Van der Waals
approach by formulating of a reduced equation of state of real networks. It will be discussed on hand of
thermo-elastic measurements and its quantitative description what is in need for a full and self-containing
phenomenological description of molecualr networks.
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Resumen- Los materiales de estructuras moleculares reticuladas pueden considerarse como fluidos
elasticos, pues su comportamiento conformacional es adecuadamente caracterizado mediante un modelo
conformacional gaseoso, con interacciones débiles, tipo Van der Waals. Las propiedades internas son
comprendidas en las condiciones de equilibrio interno, asi, los cambios relativos son sélo respecto a las
transformaciones globales de los sistemas reticulados, es decir, de sus deformaciones. Estas
propiedades globales, al menos, determinan los limites de estabilidad los cuales son expresados en la
aproximacion de Van def Waals ~ mediante la formulacion de una ecuacion reducida de estado de
sistemas reticulados reales. Se discute en base a mediciones de propiedades termo-elasticas y a su
descripcion cuantitativa, -necesaria para una descripcion fenomenolégica “particular y global de los
sistemas moleculares reticulados.
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INTRODUCTION The usefulness of this conception was
manifested by the outstanding success of
It was the ingenious idea of Kuhn and Grin the theory of a Gaussian network [1,2,4] in
[12] to consider a real chain a descrlb}ng basicly correct the 'e!astlc
mathematically defined fiber occupying no properties of‘ real networks at sufficiently
volume, having no internal structure, thus, small elongations.
without interactionand with ideal penetration It has, on the other hand, readily been noted
abilites realizing each isoenergetical that the Gaussian model is totally
conformation with the same a priori unacceptable for large deformations
probability. This "phantom chain" remains a approaching full extension of the chains
physical system because of having its mass [1,2,4]. Hope was nevertheless engendered
continuously distributed over the total fiber. from the resuits of non-Gaussian treatments
This abstract model is congenial to the [1,2.4] that the approximation of the actual
definition of a mass point, a model situation by the Gaussian theory should be
successfully used in the classical satisfactory throughout the range of ordinary
mechanics [3]. It is a logical consequence interests  [5]. Improvements of the
that the phantom chain is characterized by satatistical theory are thus often developed
an invariant statistical shape storing proceeding from the Gaussian approach
kinetical energy only the amoung of wich is [6,13].
in proportion to the absolute temperature. In any case, a complete and self-contained
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statistical theory of the thermoelasticity of
real networks which is covering the total
range of strains is still missing. This
situation is provokingthe questionwhether
there might be a chance to develop at least
a phenomenological description which is
fully characterizing thr objetive of this paper
is to consider the momentary situation in
this concern.

THERMODYNAMICS

By virtue of our interests in reversible
deformation processes of initially isotropic
bodies, we anticipate that we shall be
concerned with the differential form of the
fundamental equation [2,4,14]

dU = TdS - pdV + fdL (1)

where: U is the fundamental function
USV.LLN) defined in its natural
coordinates; § is the entropy, V the volume ;
L the longh and N as the number of
particles which is considered to be constant
(dN=0). - Recalling the definition of the
quasi-static heat flux

dQ = TdS (2)

we learn from equation (1) that for a
thermodynamically complete description the
energy transfer during deformation must be
know embracing heat and work-exchange
with appropriate reservoirs.

Referring to literature we arrive by the use of
the Legendre-transformes of equation (1),
[14]

dF = -SdT + fdL (3)
and
dG = -SdT - Vdp + fdL (4)

at the thermodynamic equations of state
[2,4,15,16,17].
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Hence, one can draw from force -
temperature measurements, conveniently
carried out at fixed length and pressure,
thermodynamic  characteristics of the
molecular networks. By integration under
constant temperature and  pressure
conditions we are led to

0=12S,, =([.dL) (7)

R

and correspondingly

w=( [ far) ®)

P
We can provide a convenient form of
characterizing elastic systems. To these

purposes we are defining the characteristic
ratio [19,20]

et gl )
Two idealized limiting models can, on
principle, be discussed:

The ideal energy-elastic system

Here we postulate the validity of the
condition

n=0 AU=w (10)

which expresses that the reversible work is
totally transferred into internal energy, AU.



The ideal entropy-elastic system

Another type of elastic system can be
defined by assuming that,

n=-1; AU=0 (11)

such that the deformational processes are
considered to occur under invariant internal
energy conditions. The work exchanged is
totally transformed into an adequate change
of the entropy of the system. A well know
system of this type is the ideal gas.

We will see that the above frame permits
us to characterize elastic systems in a
particularly convenient manner by always
referring to one of the limiting odels. Let us
proceed therefore to the consideration of
concrete elastic systems, beginning with the
discussion of an isotropic Hookian body.

The isotropic Hookian Solid

The system elements are assumed to be
"ljocalized" such that the strain-energy
function in the mode of simple elongation is
parabolic  having its minimun potential-
energy in the unstrained state. Hence , we
are led to

W = K(L - Lo)?/2 (12)

where K is the modulus of the (quai-)
isotropic elastic body, Lo is the length in the
unstrained state. Simply elongating to L, the
Hookian law of an isotropic system is
obtained

ow
fz(_a—[) . =k(L-1L,) (13)

We have to be aware that the length in the
fiducial state, Lo, is dependent on the
variables T and p. Let us suppose that the
thermal expansion of the unstrained system
is to the first approximation described by the
use of the linear thermal expansion
coefficient, 3, defined by

B =dInLo/dT : (14)

Neglecting the variaton of K on the
temperature, we then are led to the

thermodynamic equations of state of a
Hookian system in the mode of simple
elongation

fb =K(L-Lo) - KRTLo (15)
fs=KRTLo

We recognize a typical symmetry in respect
to that terms which are describing the
transformation of intrinsic properties of the
Hookian solid showing thermal expansion.
This can easily be demonstrated by the use
of n which is now obtained to be given by [
18,19,20,21,22] '

n=QW
= [KRT(L-Lo).LoJ/[K(L-Lo)*2]
= 20T/e (16)

with € =(I-Lo)/Lo as the elastic strain. In the
limits of 3—0, we arrive at the heuristical
system with ideal energy-elasticity (n = 0),
only displaying a defined change of the
internal  energy produced by an affine
transformation of the ‘“static lattice
configuration". Then, it is to be noted that
the transformation of the lattice dynamics
[19,20,23] which is by its unharmonics
originating the macroscopic thermal
expansion, is submitted to the condition

(aH“)] (a”U”)}
aL 'I’,l"’ A 5L T,P

(1)
=T g = KBTL
oL 0
T,P

The index (i) is added as a reminder that
contributions of internal freedoms to the
extensive state functions should only be
taken into consideration. Equation (17)
must necessarily be fulfiled if a Glbbs-
function in the variables (T,p,L,N) is existent
(14,17). Taking the phonons as quasi-
particles, equation (17) is expressing that
according to the conditions of internal
equilibrium all phonons are transformed
under the condition that the changes of
potential and kinetical energies are
necessarily identical [17,18].

An analogue condition of internal equilibrium
can be shown to be valid on heating an
ensamble of quantum

(17)



mechanical harmonic oscillators. [n this
case we have

ou /op, =108" /B, (18)

with Bo = 1/(kT). This is exhibiting the same
symmetry which is always imposed onto
changes of "localized" internal states under
the condition of internal equilibrium.

It is further to be noted that these
trasformations of the internal properties do
not affect the thermodynamic stability of the
Hookian bedy. We find immediately

(r/oL),,=k>0 - (19)

Hence, a Hookian solid with linear thermal
expansion is absolutely stable in all states of
deformation.

It is interesting to prove the quality of the
above approach because of the provocative
simplicity. 1t is seen from the plot in figure 1
that n(e) defined in equation (16) is indeed
correctly describing the data published by
Goritz [19]. This is fascinating because
there is no fitting parameter available. B,
the phenomenological coefficient of thermal
expansion in the unstrained, isotropic state
is solely determining the transformation of
“internal properties” during quasistatic
deformation. )
Moreover it is seen from the plot in figure 1
that at smallest extensions internal
properties are in the first place affected.
Their transformation is related to a defined
increase in the anharmoniticity of the
interaction potentials durin extension, thus,
bringing about an adiabatic cooling of elastic
solid on elongation [18,23]. This happens
because of the necessity of distributing the
total kinetical energy over an increasing
number of phonon states the energy levels
of which are continuously lowered with
elongation.

Hence,we arrive at the hypothesis that
global properties in the elastic solid must be
modified if limited thermodynamic stability in
deformed states will be described. In view
of this question it is attractive fo study
molecular networks. Here, we will be in the
position of also discussing the limits of
stability what might also influence strategies
in describing solid-state deformation at large
elongations.

A

Networks

In this section we consider the thermo-
elastic properties of networks proceeding
from the heuristical model of an ideal
network (Gaussian network) to real
networks by systematic and logical
improvements.

Gaussian Networks

The properties that are defining the ideal
network are the best recalled by the use of
the simplifying sketch shown in figure 2.
Gaussian chains in its  equilibrium
conformation (maximum of entropy of the
representative coil) are forming a network
with pointlike fixed nonfluctuating crosslinks
[1,2,4]. Postulating an affine transformation
of these crosslinks [1,24] a distint
orientation of the chain-end vectors is
needed accompanied by a defined dilatation
(fig.2) [1]. Having Gaussian chains as
phantom-chains, the energy stored in the
network is kinetical only. Hence, we may
consider this phantom network to be
adequately represented as an ideal
conformational gas [25,26] This
hypothesis can the best be proven by
studying the thermo-elastic properties. The
deformational potential in the mode of
simple elongation should correspond to that
of an isotropic continuous [27]

W =(G/ 2 +2/A=3:A=L/ L, (20)

where A is the macroscopic strain in
direction of the stress. The elongation
should occur under constant volume
conditions too. The entropic nature of
energy changes upon deformation can only
be taken into consideration by appropriate
specification of the modulus

G=G,T (21)
it is the advantage of the molecular statistic

treatment of the Gaussian network [1,2,4]

that G can uniquely be related to
temperature as well as to the number of
chains, hence, delivering the relation

G =G,T = NikT (22)

which is equivalent to the fact that each
chain in the isotropic state is storing in the
average the same amount the kinetical



CHRONIFER 1808
il T = 2°C
10
5»
D X L A A i x B

at 0.3 a5 a7 E/%

Fig.1 : Plot of n versus ¢ for steel wire (Chronifer 1808) according to D. Géritz [19] deformed in simple

elongation at room temperature.
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The solid line is computed with the of equation (16) (B= 4,05 x 10-5 deg'1)
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Fig.2: lllustration of the affine transformations of an isotropic network. An idealized representation of the
fiducial state is drawn out in the upper part of this figure. The chain end vectors are then tranformed as
shown in the lower part where the orientational and dilational transformation of a distincd chain-end-to-end

vector is to be seen.



energy of conformation being equal to 3/2
kT [18,25].

With equation (20) we are led to the
mechanical eqution of state of an ideal
network

f=(G,/ L)ID; D=4 -\’ (23)

By the use of the definitions (5) and (6) the
thermo-elastic equation of states are thus
abtained to be equal to

f=0 (24)

= T(%} = (25)

Hence, we easily derive
n =Q/Wi=-1 (26)

THis result is underlining that the ideal
network must be considered as an ideal
entropy-elastic system.

The global properties of the Gaussian
network model are defined by postulating
phantom-chains, having no volume, no
internal structure, no interactions, thus,
being physically

characterized by having their mass
continuouslydistributed over the fiber-like
chains  themselves. This  abstract
conception is in direct contrast to the real
situation dictated in condensed matter.

A sustantial step to the right understanding
of realnetworks has be done by various
authors especially by P.J. Flory [2,15,16,17].
It was introduced to consider the thermal
expansion as well as the contributions of
non-isoenergetic rotational isomers. The
second step is directed to a corection the
"standard state" of networks. We
demonstrate this the best by defining the
new deformation potential

W = <r2>/<r,2> Wi (27)

<r¥>/<ro*>is very often called the "memory
term" relating the squared average of the
actual chain-end-to-end vector in the
network to the corresponding vector of a
freely-jointed chain having non
isoenergetical rotational isomers [2,4,28-32].
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The belonging thermo-elastic equations of
state are equal to

din<r} > 3BT
fb‘f{T dr +x3—1}
(28)
din<rl > 3BT
f=fl1-T 0
/s f{ T +x3—1}
(29)

Because of observing the same symmetry in
respect to the terms originated by internal
freedoms as discussed in prior sections, we
arrive at the conclusions.

-The global properties of ideal networks with
thermal expansion etc. are represented as
an ideal conformational gas.

-Internal deformation afeccted properties
are “"anharmonic interactions" in the
macomolecular fluid as well as the
configurations of the rotational isomers.

With the same arguments as used in the
discussion of the thermo-elasticity of the
Hookian body, we find then that the ideal
network with internal properties as defined
here is absolutely stable.

It is interesting to check utility of the above
approach. The stress-strain  behaviour
appears to be correctly predicted for small
extensions up to A =13 - 1,4 what is
exemplified in figure 3A. What is
fascinating is the observation that the
"Flory-approach” is indeed also correctly
describing thermo-elasticity of real networks
in the range of sufficiently small elongations.
This is demonstrated in figure 3B. We
thus find that real networks behave at
small elongations in respect to the
conformational abilities of their chains like
an ideal conformational gas; the volume,
the finite length of the chains, their
interactions are of no measurable
importance. The internal properties are
submitted to the conditions of internal
equilibrium, thus, contributing "potential"
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Fig 3: Styrene butadiene rubber (SBR) in simple elongation at small strains at room temperature
according to G.Hohne et al [33]. A) stress-strain curves: The solid line is computed with the aid of equation
f=G D, G =(pRT/M)<r?>/<r,*> =4,1x10-3N; B) Q(X) computed using equtions (29) and (7) with R=2,6x10-4
K-1; d In<ro?>/dT=0 K-1.
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Fig.4: n(\)de SBR at room temperature according to G.H6hne et al [33] in the range of small strains. The
solid is computed with the set of parameters as given in the capture of figure 3, the dotted line is
indicating the ideal network with =0



and "kinetical" energy of deformation as
demanded by equation (17).

The above hypothesis is also illustrated in
figure 4. We observe a thermo-elastic
inversion which is expressed in n(A) by its
change in sign. This inversion is deeply
related to the fact that at smailest A’s the
production of "holes" is dominant compared
with  globally considered change of
conformation. Hence, we are led to the
conclusion that the volume of molecular
networks must necessarily be increased on
deformation if the internal properties remain
that of a fluid [2,10,15,3536]. The
correctnees of this interpretation s
manifested for sufficiently small elongations
(see figure 5) using the relation [2]

AVN = 3yNKT <rz> (1-XY[V <r,2>] (30)
where 3y is the isothermal bulk com-
pressibility at constant length defined by

X = -(OInLo/OP) v (31)
From these results we find the Gaussian
approach as an adequate description of the
thermoelastic properties of rubbers at
sufficiently small extensions:

Here, the global properties are indeed
indistinguishable from the predictions of the
jdeal network theory provided that the
chains are sufficiently long [2,4]. Although
represented as an ideal conformational gas
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we find internal properties regulated by the
conditions of internal equilibrium,thus, being
in a defined dependence upon the global
deformation processes. This should for
example also influence the trans-gauche
configurations in rubbers, if we let the trans-
conformation be the energetically lower-

valued rotational isomer, we derive from
equation (17) with
(GH”)]

oL N <0 (32)
for simple elongation that

(as(“j
1 oL I <0 (33)

An increased ordering of the rotational
isomers may appear favouring stretching
induced crystallization in such networks.
Yet,there are no doubts about the limits of
the attractive approach presented. This is
ilustrated with documentary evidence in
figure 5 and figure 6.

Thus, we are led to the question whether
and appropriate improvement of the
simplest model in the global range,
represented by the concept of an ideal
conformational gas, can establish a more
satisfying approach to the data.
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Fig.5: A/V against & according to Christensen et al [35].The doted fine is calculated employing equation
(80) with 3y (NKT/V)<r?>/<rs?>=1,5x10-4 according to Treloar [2].
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Fig 6: Thermo-elastic properties of SBR at room temperature according to G. Hohne et al [33]. A) stress-
strain data ;the solid line computed B) Q(A) -data; the solid line calculated for a Gaussian network; in both
calculafions the same set of parameters as indicated with the calculations shown in figure 3 and 4, has

been used.

The Van der Waals-approach

An adequate mechanical equation of state
should be more exacting at large extensions
than that of a Gaussiannetwork. As
essential aspects it should be taken into
consideration:

-The finite length of the chains [1,2,4] as
well as.
-Global interaction between the chains.

It is moreover a necessary condition that
the new equation of state must at sufficiently
small elongations asympto-tically become
identical with the equation of state of the
ideal network; All of the above aspects can
be considered by a van der Waals equation
of state of networks [17,18,25,26].

Comparing the equation of states of the
ideal systems

IDEAL GAS IDEAL NETWORK

p=NKT/V fo=(NKT/L;)D

with p as pressure, V as volume, N as the
number system elements and k
Boltzmann's number. Visualizing the
correlations

pefo, Ve D
it is easy to formulate, proceeding from the

van der Waals equation of state of real
gases,



p = NKT/(V-b) - a/V? (34)
the corresponding equation for real
networks

fo = NKT/[Lo(1/(1/D - 1/D)]- ao/(1/D?)  (35)

which we prefer to write in its extended form

4, MM, 3
where
D=
B=D./(D,~D}; (37)
D= o B = Lyl (38)

we recognize from equation (36) that the
front factor group is identical with the
equations of state of the Gaussian network.
we have only rewritten the front-factor by
using the density p and the average
molecular weight of the chains [1,2]

M = ng Mg (39)

This cuantity may be expressed as the
product of theaverage number of statistical
segments, ng, times the molecular weight of
this unit, M. In the Gaussian approach the
maximum strain of such a chain should be
given by [37]

R =iy (40)

The global properties of the network are
substantially modified by factor in the
brackets being determined by both of the
van der Waals coefficients

Amand a= aq/ G, letting G be written as
G = (RTp Ihm? M) <PP>/<rg”>.

It is seen from equations (37) and (38) that
Am is defined in the limit of extremely large
extensions limity_xm [ = .

This heuristical state corresponds to a basic
singularity: Infinitely large forces would be
necessary bring the rubber comprised of
chains of finite lengths into this state, the
characteristic A, of which is, thus, uniquely
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related to the average chain length in the
network. The parameter a is a least
empirically describing "global" interactions
between the chains restricing definitely their
conformational abilities [25,26].

The thermo-elastic equations of state are
then equal to [38]

fb=f-T¢
Fe= {1 - T} (41)
with
D B-—al -@Dh
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Comparison with experiments

First we demonstrate the quality of the fit to
stress-strain data for various rubbers. In
figure 7 the "mooney" plot of experimental
force-extension data for peroxid crosslinked
rubbers published by Mullins [39] is shown.
Letting a = ayy G =0,26 be invariant, we
arrive with the Ay's as indicated with each
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curve at a very satisfying representation of
these data. The upturn at larger extensions
is clearly the effect of finite extensibility of
the chains [1,2,4,41,44] described by a
proper value of A, [18,25,38,40]. It is to be
noted that this fit is based on the
assumption of having identically sized
statistical segments in all the systems
involved.

It should be emphazised that A, and a can
be obtained from the fit to the shape of the
stress-strain data [37], thus, ,bringing. about
the outstanding possibility of determining the

size of the statistical segments, My, from
the discussion of the absolute force,
provided that the memory term is equal to
one and that the functionality corrections
[7,45-51] are known.

From the representation shown in figure 8
the topological relationships between these
stress-strain curves is readily visualized. All
these data can satisfyingly be fitted with
equation (36) delivering An-and a- values
which have all together the same order of
magnitude (table 1).
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Fig. 7: "Mooney" plot of [f*] = f/D- Data according to Mullins [39] against A" for peroxide-crosslinked
rubbers containing (1) 5%; (2) 4%; (3) 3%; (4) 2%; (5) 1% peroxide. The solid lines have been calculated
with the aid of equation (36) employing the following set of parameters. (RTp) <r*>/<ro’>/Msg = 0,166 Nmm’"
2 a=0,26 and (1)Am = 6,65; (2Am = 7.3; B)An = 7.7; (4)An = 9,4; (5)Am = 11,5
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Fig.8: Stress-strain data at room temperature for various rubbers in simple extension according to Eisele

et al [37]. (A) SBR; (B) PB; (C) TPR ; (D) polychloropreno

as listed in table 1 [52]

Table 1:

System G /10° Pa Am a
(A) styrene-butadiene rubber (SBR) 0,359 8,8 0,2
(B) polybutadiene (PB) 1,15 12,5 0,24
(C) poly-transpentenamer (TPR) 0,595 11,0 0,24
(D) polychloropreno 0,595 8,8 0,21

Hence, we are led to the conclusion that the
van der Waals corrections of the "global"
network properties are proper modifications
of the situation in molecular networks
allowing a fit of the stress-strain data within
the total range of extensions.

The thermo-elastic behaviour

Given the fact that the stress-strain
behaviour of real networks is fully
understood with the van der Waals
approach, we are faced with the question of
whether the thermo-elastic properties can
also be treated within this framework. The

quality of the fit to data can be seen from
figure 9 [38]. From the plot in figure 10 it
will be noted that the experiments can fairly
well be represented up to largest
extensions. We wantto stress here that
this phenomenological coefficients
R=dInLo/dT and p =d In <ro®*>/dT. We
thus arrive at the finding that real networks
behave like elastic fluids up to largest
extensions provided that crystallization does
not occur [2].
The volume changes

Since the work of Gee [15] the description of
the changes of volume which accompany



Fig. 9: Plot of W(X) and Q(A) for natural rubber in simple elongation at room temperature
according to [5,38]. The solid lines have been computed with the equation (7), (36),(39) and (41)
with the parameters:

G g Am a /K WK

0,359 10 0,2 22 x 10™ 9,6 x 10

the applications of stress, under constant
pressure conditions, has been one of the (@’fj <l ik
central issues [2]. Making use of the P
Maxwell relation (43) with p as the
hydrostatic pressure we immediately derive
from the equation of state (36)

where
%) oV £e
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Fig. 10: The same system as given in figure 9 at larger extensions.
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Here the isothermal linear coefficient of
compressibility at constant length has been
defined as

y=-{(0mnL,/dp),, (46)

By integration we are then led to

L
av/v=v"[(ev/oL,), dL (@)

TP
Ly

It may by recalled that the Gaussian theory
does not in general provide a satisfactory

guantitative basis for the interpretation of
the volume changes at larger extensions [2].
It may thus be taken as a sustantial prove of
the quality of the van der Waals approach
whether a quantitative fit to the data can be
achieved by means of the equations (44) or
(47). For natural rubber vulcanizates the
experimental values of dilatation coefficient
can indeed satisfyingly be calclilated not
showing discrepancies as obtained for the
Gaussian approach [2] (fig.11). From the
results presented up to now it can thus be
concluded:

Real rubbers behave on isothermal isbaric
uniaxial extension up to largest elongations
like an elastic fluid the conformational
abilities of which are properly characterized
using the model of a van der Waals
conformational gas with weak interactions.
Conditions of internal equilibrium are strictly
regulating the transformation of intrinsic
properties , thus, producing the thermo-
elastic inversion as well as defined
changes of the volume. This is at least
indicating that a Gibbs-function of such
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Fig.11: The relative volume change for NR against the strain according to [35,5]. The solid line is
computed with equation (47) using the figure 9 and x = 2,5 x 10 cmkg and @ = daldp =6 x 107 x[4]

systems should exist as the fundamental
function which allows for a full and unique
description of all elongated states without
crystallization processes.

Rotatoric freedoms

Having now described the thermo-elasticity
of real networks at room temperature, we
proceed to consider the dependence upon
temperature. The measurement of
isothermal energy transfer during simple
elongation of a styrene-butadiene-rubber
obtained with a stretching micro-calorimeter
at various temperatures [33] display a
surprising effect (see figure 12)

B). At T=90 °C a thermo-elastic inversion is
found dissappeared in spite of observing a
thermal expansion coefficient of
approximately the same size as determined
at room temperature [33]. In the limits to
smallest elongations (A>1) n (A) has

changed sign, thus, indicating an inversion
of the reversible transformation properties
of internal freedoms in the SBR network at
temperatures above room-temperature (fig.
13) It is to be noted that the stress-strain
behaviour can nevertheless satisfyingly be
computed with the aid of the equation of
state defined by equation (36). This is

shown in figure 12A. On the other hand ,
there is no possibility at all to manage a fit to

the Q (X)-data with the thermo-elastic
equations of state of a van der Waals
network (41). Thus, heat must be emitted
from the system to the reservoir by
additional  strain  dependent internal
properties of "rotatoric nature" because of
not giving any contribution to the reversibly
stored elastic energy of deformation. From
the laws of thermodynamics we thus have
Tds" = SQrev(r) = du® (48)
with dS®” and du®
internal energy
changes of the rotators.For the isothermal
simple extension (with dV® = 0) we than
are led to

T( as(”j i (GU")J
oL el
TP TP

what again is expressing the presence of
internal equilibrium with its equally sized
changes of kinetical and of potential
energy in all quasi-static steps of
deformation.

The rotatoric oscillations are considered
to be excited at temperature T > Tr,
con Tr designating the freezing
temperature of the rotatoric oscilators.
To calculate these effects we accept the
approximative Dolitlle  type equation:

as the entropy and

49)
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Fig.12: The thermo-elastic data of SBR in the deformational mode of simple elongation; each curve
according to (33). The solid lines have been computed with the equations (36),(41),(42) and (53) using the
set of parameters: figure 12A: J(n) curves, figure 12B: Q(A) curves, Gle®=0041n Am=142a=02 B =
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Fig.13: Plot of n(X) for the same SBR as presented in figure 12
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n(T,3) =n,e 0D 50)

where n(T,A) is the number of oscillating
rotators with its maximum in the unstrained
state equal to nor, AU is the activation
energy, y(A-1)RT is the potential energy of
the rotator in the force field. Because of
having the force in proportion to T we
recognize that the strain-induced freezing of
the rotators should to a first approximation
be independent upon temperature [33].
Using this approach we arrive at

Tds”=8Q" =T S," dn (51)
where S, is the specific entropy of a

rotatoric oscilator at T and f. Leeting SY be
independent upon T and f we are led to

(r)
o - T[CS j@- =~ é”n(r,z){@] (52)
a a

A

We see from figure 12B that the fit to the
data can now farly well be achieved whit the
aid of

80 =L, [ far+30" (1) (53)

The new situation at elevated temperatures
can thus be pictorialized in terms of local
rotatoric oscillations which will continuously
be activated at T > T,. The process wich will
then occur during elongation,.is a defined
restriction of these internal motions with
equally sized decreases in entropy and
internal energy, thus manifesting presence
of internal equilibrium.

Occurrence - of adequate motions are
reported by stoll et al. [53] who found in
dielectric and mechanical relaxacion
measurements a process with a broad
frecuency spectrum the maximum of which
should appear 30-50 dgrees above the
quasi-static glas transition temperature.
Monnerie has also found evidences for such
motions at T>T, [54].

Different deformation modes
An interesting phenomenological approach

expanding the "rivlin type of formulations"
[2] was made by Ogden [55] who dispensed

with  the restriction in the stress-strain
function to even powers of the extension
ratios defining the potencial for an
incompressible rubber in the general form

W= Zg“(% +AY +AY —3)  (54)

h

where o, may be have any values positive
and negative, and are not necessarily
integers,and pn are constants. The
principle stresses are then of the form

G=Zun(7»a"_l _la,,c-]) | (55)

with ¢ = 0,5 for simple extension, c=1 for
simple shear and c=2 for equi-biaxial
tension.

The utility of this formulation can be seen
from the fit to Treloar's data [56] obtained in
simple extension, equi-biaxial extension and
pure shear as illustrated in figure 14a. It is
to be noted that six constants are necessary
for this phenomenological representation.
Another very satisfying approach was given
recently by K. Tobisch [63,64] on the basis
of the Valanis and Landel hypothesis [65].
The deformational potential is then
defined by

W= o) (56)

employing the empirical relations
A
1 ) B
(0 V=20 e Ve —(1— %, ) (50
(r.)=26] S (1=2.7) (87

with G, A and B as the characteristic
parameters of this mathematical
representation. The excellent fit to the data
of Treloar [59] is shown in figure 14b.

Let us now judge the utility of the van der
Waals approach by its ability to fit the data
for rubber under different types of strain.
First we have to notily that the maimum
chain extensibility parameter should clearly
depend upon the deformational mode [25].
Am A paper published recently by Edwards
et al. [57] can provide a justification of the
dependence [58]

Amn) = Am(1)0h



Table 2

6,3; u2 =0,012; u3 = -0,1; [u] = kg cm?

A m{i) D(:) dn
Simple extension 7‘*".(1) A =3t 1
Pure shear }\'m(l) =T 1
Equi biaxial extension -5 2
q 7\')71(” / ﬁ ;\' e }\‘
Equi-triaxial extension " 32
g km(l) / ‘\/g 3()\' 1)
Dm(i) has the analytical form as Dy,
A has only he substituted by Ay
o
A

Fig.14a: Representation of data for simple extension and equibiaxial extension by Treloar [59] on the
basis of equations (56) and (57) according to (55) using the parameters a1 =1,3; 02 =5,0; a3 = -2,0; p1 =
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Fig 14b: The same data as given in figure 14a according to Treloar (59) computed ourgoing from the
equaling (56) and (57) according to K. Tobisch [64]
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Fig.15: Representation of data for (a) simple elongation, (b) simple shear and (c) equibiaxial extension
according to Treloar [2]. The solid lines have been calculated with the aid of the equations (36) employing
@D =1 - 12, & =0,365 Nmm? Am1) =10,8, 2 =0,19; (b) D =X - 1%, A =Amqay, (€) D = & - 12, Amezy = An(y2"2
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Fig.16: Complete extension and compression curve according to Treloar [2]. Calculated with the aid of
aquation (36) using the parameters, £ =0,365 N mm =10,8, a= 0,19, forA < 1: Amz) = km(1)/2"2
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Fig 17: Reduced force [f<] of poly-(dimethylsiloxane) vs A" according to Erman and Flory [60]. The full

lines are computed with the aid of equation (36), using G = 2,18 N mm-2; A, =14,5; a =0,24. For

calculations with Am) = km(1>/2”2

<1 the

corresponds to the solid line, While the dotted line has been obtained with Am(1)

with d, designed to the values as given in
table 2. This is a first approximation
because of the lack of an adequate
"single-chain ireatmen" of the van der
Waals approach.

Under these circunstances, the degree of
agreement as shown in figure 15, must be
considered as very satisfactory. This is

elucidating that the reasons .behind the
differences in the stress-strain behaviour in
different conformation abilities of the chains
of finite lengths.

For uniaxial extension and compression we
arrive at a fit as drawn out in figure 16
which is seen to be in poorer agrrment with
the data at larger degrees of compression.
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The dependence of fe= f/D over 1" is on
principle predicted to be asymmetric if the
maximum strains Ama and Amz = Amay2'?
are used in the dilatation or compression
range {fig. 17).

Hence, there seems to exist basic
correspondence to measurements of Erman
and Flory [80].

The reduced equation of state

For all rubbers studied, the van der Waals
equation of state describes the stress-strain
behaviour within the fotal range of
elongations. But it is to be noted that this
equation of state does not every where
satisfy the criteria of intrinsic stability in full
correspondencs 1o the characteristics of the
classical van der Waals equation of state of
real gases [14]. The consequences of this
fact can be discussed in a very general
fashion by the use of the reduced equation
of state which has recently be derived by
Viigis et al.[59]. The formulation of this
equation of state based on the knowledge of
the critical data. of the van der Waals
network

Te =827 a0y

De = Dmf3

f. = aph 127

is leading us to the reduced equation of
state

¢ = d (843-0)-3d) (59)

where reduced variables have been defineg
accordingly

[ =Fiad=D0c t=TM¢ {(60)

From the plot drawn our in figure 18 we
realize that all rubbers of practical interest
are stable in the total range of elongations
because of being in sufficiently large
distances to the limit of stability which is also
drawn out in figure 18

Hence, in the mode of simple elongation the
occurrence of aphase transition is predicted
[25]. This concept properly extended, might
also deliver an understanding of the necking
process [61] often observed in "cold drawn”
samples deformed at temperatures below
their glas fransition [62]

What we want to stress here is only the new
aspect that real networks turn out to be in a
deinite distance to limits of stability which
are uniquely defined by their global
properties as “network properties”. The '
intrinsec properties are not contributing to
the limitation of stability of these systems.
This might be considered as a general
feature of isotropic or quasi-isotropic clasic
systems such that their limits of stability
should at least be orginated by
cooporations between appropriate
subsystems at deformation which are
representing interacting “"global structural
subunits” in such elastic systems.

Summarizing remarks

vin the above treatments we have

experienced the presence of a hierarchic
principle. The stress-strain behaviour is
governed by global network properties with
their characteristics the best describedas a .
Van der Waals conformational gas. Work
can only by stored by diminishing the
maximum isotropic state entropy on
deformation due to a belonging reduction of
the conformational abilities of the chains in
different deformation modes. The Van der
Waals  correction terms are related to
effects produced by the finite length of the
chains and by interactions between the
chains the latter ones probably originated by
thedynamics at the junctions regulating
especially the local energy and momentum
exchange {26].

Isothermal isabaric deformation
experiments seem properly by described
defining the Gibbs function G(T.p,L,N) which
has with N= const. the differential form

dG = -SdT + Vdp + fdL (61)

thus, implicating the existence of three
equations of state [14).

S5=8(Tpl)

=gl

The totality of all three equations of state is
only equivalent to the fundamental equation
and contains all thermodynamic information
about the system. Any single equation of
state contains then necessarily less
information. Relationships known as
Maxwell refations [2,14.17], derived from

V=V(Tpl),
(62)
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Fig.18: The f” plot against d = D/D,, t = 1 corresponds to the critical isotherm. The dotted line is giving the
limits of stability. Actual rubbers are represented by the curves. (A) D, = 10; a = 0,2; { = 1,685 with D, =
3.33; T, = 177,8 K and fJ/NK = 0,74 (Natural Rubber and Polychloropre. (B) D, = 8,5; a = 0,24; t = 1,66
with D; = 2,83; T, = 181,3 K and fJ/NK = 0,64 (Polybutadiene). (C) D, =7,5; a = 0,36; t = 1,25 with D, =
2,5, T. = 240 K and fJNK = 0,75 (Styrene-Butadiene Rubber). (D) D, = 13,5; a = 0,18; t = 1,39 with D =
4,5 T, = 216 K and fJNK = 1,2 (Styrene-Butadiene Rubber); full lines: calculated with equation (5)),

points: experimental values

the condition of integrability, deliver
differential correlations between the state
function involved.

C=

il W (83)
oL TP or L,P

or

), -3

(aL .p \op i

LT
In this situation it is, nevertheless, evident
that an analysis of a rubberelastic system
with the aid of the thermo-elastic equations
of state only (see eq. (41)) can on principle
not provide a complete characterization of
the rubber as it is exemplified in the
discussion of deformational induced
transformations of rotatoric oscilations. In
addition, the knowledge of the pressure-

dependence of the nework properties on
deformation is wanted for making the
description complete.

It has already been indicated that no
generally accepted molecular interpretation
of the thermo-elastic properties of molecular
networks has yet beenadvanced. In this
view, the importance knowing the Gibbs-
function the existence of which can be
drawn from all of the above results, is that it
provides a basis for improvements of the
statistical theory. A central problem is clearly
to arrive at an understanding of the global
properties of van der Waals networks, in
particular the physics behind the interaction
parameter a. Finite chain entensibility as
well as interactions between the chains are
both of elementary significance in
discussions which will be directed to an
understanding of the limits of stability.
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List of symbols

U internal energy

T absolute temperature

S entropy

V volume

G free enthalpy

F free energy

W work

Qrev  heat reversibly transferred

p pressure

L actual length

Lo length in the unstrained state

Imax  maximum length

A relative elongation

Am maximum relative elongation

€ strain

i force

fq energy component of the force

fs entropy component of the force

fn enthalpy component of the force

K modulus

G,G0 shear moduli

N number of chains in the network

k Boltzmanns number

B linear thermal expansion coefficient

X isothermal compressibility

<r?>[<ry?> memory term

n=Qw

D=7

s

B=D,/(Dy-D)

Nst number of Kuhn-segments

Ms; molecular weigth of the Kuhn-
segment

o) density

R gas constant

Amia van der Waalsparameters
AU activation energy

n(T, A) number of activated “rotators”
Y potential energy parameter

i freezing temperature

Tos Dol critical parameters
f’, d, t reduced variables
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