INTEGRACIÓN OPTIMIZACIÓN – CONTROL PREDICTIVO Y APLICACIÓN A LA PLANTA TENNESSEE EASTMAN

Luz A. Alvarez Toro¹ y Oscar Sotomayor²

¹Escola Politécnica Universidade de São Paulo (USP), São Paulo – SP, BRASIL ²Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe (UFS), São Cristóvão – SE, BRASIL

RESUMEN

El control predictivo (MPC) es una estrategia de control avanzada, ampliamente usada en procesos industriales. MPC es también una de las áreas de investigación más activas en la teoría de control. Asuntos tales como optimalidad, estabilidad y robustez son bien conocidos, sobre todo para sistemas lineales. Sin embargo, a pesar de esta grande adopción, tanto en los medios industriales como académicos, poco se ha escrito sobre la forma cómo estos controladores son implementados en la práctica. Este articulo trata de llenar este vacío, presentando el desarrollo de sistemas de optimización y MPC, y discutiendo su integración dentro de una estructura de control jerárquica. El esquema de control integrado propuesto es aplicado a la planta Tennessee Eastman, y los resultados obtenidos muestran la efectividad de la estrategia propuesta para el control óptimo de procesos.

Palabras clave: Control predictivo, Optimización, Control jerárquico, Control óptimo de procesos, Planta Tennessee Eastman.

ABSTRACT

The predictive control (MPC) is an advanced control strategy widely used in industrial processes. MPC is also one of the most active areas of research in the theory of control. Subjects such as optimality, stability and robustness are well known, especially for linear systems. However, despite this large adoption, both in the media industry and academics, little has been written about how these drivers are implemented in practice. This article tries to fill this gap, introducing the development of systems optimization and MPC, and discussing their integration into a hierarchical control structure. The proposed integrated control scheme is applied to the Tennessee Eastman plant, and the results show the effectiveness of the proposed strategy for optimal control of processes.

Keywords: Predictive control, Optimization, Hierarchical control, Optimal control of processes, Plant Tennessee Eastman.

I. INTRODUCCIÓN

El Control predictivo (MPC) o control predictivo basado en modelo (MBPC) puede ser considerado como la mavor innovación en control avanzado de procesos de los últimos 20 años y la herramienta standard para aplicaciones industriales (Qin y Badgwell, 2003). El número de estas aplicaciones es estimada alrededor de 6000 en todo el mundo, constituvendo un mercado creciente a una proporción anual de, aproximadamente, 18%. Su suceso se debe, principalmente, a la incorporación de un modelo del proceso en el cálculo de la ley de control y a su fuerte relación con optimización on-line, que le permite tratar procesos multivariables, acoplados, con respuestas inversas, tiempos muertos, restricciones operacionales y errores de modelado y de medición.

MPC es también una de las áreas de investigación más activas. Desde el trabajo pionero de García *et al.* (1989), la teoría MPC ha evolucionado en forma substancial. Actualmente, cuestiones teóricas tales como optimalidad, estabilidad, desempeño y robustez son bien conocidas, sobre todo para sistemas descritos por modelos lineales, que puede ser comprobado por la cantidad de artículos disponible en la literatura. Sin embargo, a pesar de la amplia adopción de los controladores MPC, tanto en los medios industriales como académicos, poco se ha escrito sobre la forma como estos controladores son implementados en la práctica.

En una instalación industrial típica, los MPC son comúnmente implementados en el nivel de supervisión dentro de una estructura de control jerárquica, entre un nivel superior de optimización estacionaria y un nivel inferior de control regulatorio, como es mostrado en la Figura N.° 1. Esta estructura de control jerárquica proporciona una separación clara de objetivos y escalas de tiempos entre los diferentes niveles que componen la estructura (Skogestad, 2004). Por ejemplo, los niveles de optimización calculan la operación económica de la planta en una escala de tiempo de minutos a horas, en tanto que los niveles de control proporcionan regulación y acción de servo en escalas de tiempo de segundos a minutos.

El objetivo del presente trabajo es mostrar el desarrollo e integración de sistemas de optimización estacionaria y control MPC y su aplicación en procesos industriales complejos, haciendo parte de una estructura de control jerárquica. El desempeño del sistema de control integrado es evaluado por simulaciones usando la planta Tennessee Eastman (TE), para los casos de variaciones en las condiciones de operación y perturbaciones no medidas. Propiedades de esquemas integrados optimización-MPC del punto de vista de estrategias de implementación, estabilidad robusta, desempeño dinámico y análisis de sensibilidad, son analizados por Ying y Joseph (1999) y Nikandrov y Swartz (2008). Este esquema de control integrado es implementado en la mayoría de los paquetes comerciales MPC y es, frecuentemente, usado en la industria.

Figura N.º 1. Estructura de control jerárquico.

II. LA PLANTA TENNESSEE EASTMAN (TE)

En 1993, Downs y Vogel publicaron el modelo de un proceso químico industrial de la Eastman Chemical Company, que quedó conocido como planta Tennessee Eastman (TE). El propósito de los autores fue colocar a disposición un problema de referencia para desarrollar y evaluar diferentes tecnologías de control de procesos, principalmente, para estudios relacionados con control total de planta y control multivariable. Un diagrama simplificado de la planta TE puede ser visualizado en la Figura N.° 2.

El proceso consiste de cinco unidades de operación: reactor, condensador, separador líquido-vapor, compresor de reciclo y columna *stripper*. El reactor es un tanque con agitación continua (CSTR) de dos fases, en el cual se generan dos productos G y H y un subproducto F a partir de cuatro reactivos A, C, D y E, y un inerte B. El proceso dispone de 12 válvulas para manipulación y 41 mediciones para realizar monitoreo y control, siendo 12 de ellas continuas y 29 discretas. Adicionalmente, los autores proponen diez posibles perturbaciones que pueden afectar al proceso. Se presentaron también 6 modos de operación de la planta, definidos como la relación másica entre G y H en la corriente de producto y la velocidad de producción. El caso base es 50/50, los demás están definidos como 10/90, 90/10; y velocidades máximas de producción. Ricker (1995) determinó las condiciones óptimas de estado estacionario para cada uno de los modos de operación. logrando una disminución de más del 30% en los costos de operación de la planta. En todos los casos se demostró que es óptimo operar con la presión máxima y el nivel mínimo en el reactor, velocidad máxima de agitación en el reactor y la apertura mínima de la válvula de vapor. Además, en la mayoría de los casos, es óptimo utilizar una apertura mínima de la válvula de retorno del compresor. También se resalta que las variables controladas deben seleccionarse cuidadosamente y no de forma arbitraria.

Básicamente, los objetivos de control de la planta TE son: a) Mantener las variables del proceso en los valores deseados, b) mantener las condiciones de operación con las restricciones de los equipos, c) minimizar la variabilidad en la velocidad de producción y en la calidad del producto durante perturbaciones, d) minimizar los movimientos de válvula que afectan otros

Figura N.º 2. Diagrama de proceso de la planta TE.

procesos y e) recuperarse rápida y suavemente de las perturbaciones, cambios en la velocidad de producción o en la composición del producto. Es necesario resaltar que una de las restricciones más importantes en la planta son los límites de operación de las variables presión y temperatura en el reactor; si la presión alcanza el límite superior de seguridad de 300kPa, la operación de la planta se detiene, es decir, se apaga.

El listado de las variables medidas y manipuladas de la planta TE y sus valores operacionales en estado estacionario son aquí omitidos, mas pueden ser encontrados en el trabajo original de Downs y Vogel (1993) o en Ricker (1995).

III. CONTROL PREDICTIVO

El término control predictivo (MPC) o control predictivo basado en modelo (MBPC) se refiere a una clase de algoritmos de control automático que controlan la respuesta futura de una planta a través del uso de un modelo explícito del proceso. En cada instante de muestreo, el MPC soluciona on-line un problema linear cuadrático (LQ), usando el estado actual de la planta como estado inicial. El resultado de la optimización genera una secuencia de control óptimo en lazo abierto que es aplicado a la planta de acuerdo con la filosofía del control de horizonte móvil (RHC), donde solo la primera acción de control de la secuencia es usada, proporcionando un controlador con las características de re-alimentación deseadas. MPC incorpora ideas de identificación de sistemas, optimización y teoría de control.

Los orígenes del MPC tuvieron inicio a partir de 1960 (Garcia *et al.*, 1989). Al contrario de la teoría de control óptimo LQ, que fue desarrollada en los medios académicos, el MPC surgió de la necesidad práctica de enfrentar problemas multivariables, pues los controladores convencionales PID fueron incapaces de satisfacer los requerimientos crecientes de desempeño de las industrias. Sin embargo, el interés real en MPC comenzó a crecer a partir de 1980, después de los primeros trabajos sobre MPHC (Model Predictive Heuristic Control), DMC (Dynamic Matrix Control) y, particularmente, después del QDMC (Quadratic Dynamic Matrix Control), que fueron muy populares en la industria petroquímica y en las estaciones de energía. Desde esa época han surgido nuevas variantes MPC, tales como: MAC, IMC, GPC, MOOCA, HIECON, PFC, OPC, PCT e RMPCT. A pesar de la cantidad de abreviaciones introducidas, no existen muchas diferencias entre estos algoritmos. Típicamente, estos algoritmos difieren en el modelo del proceso usado, perturbaciones y adaptación. Interesantes reviews de esta tecnología pueden ser vistos en García et al. (1989), Morari et al. (1999), Rawlings (2000), Qin e Badgwell (2003) y Camacho y Bordons (2004).

A pesar del surgimiento de los algoritmos MPC no lineales (NMPC), la generación actual de algoritmos MPC, comercialmente disponibles, son basados en modelos lineales (LMPC, o simplemente MPC). Entre estos, el algoritmo QDMC de García y Morshedi (1986), que usa un modelo de respuesta al escalón para predicción, es ampliamente usado en aplicaciones industriales. Básicamente, el QDMC debe calcular los valores de las variables manipuladas (acciones de control) que minimizan a diferencia entre los valores predichos y deseados de las variables controladas, sujetas a las restricciones impuestas a las variables manipuladas. En general, el algoritmo QDMC minimiza un funcional de costo cuadrático de la siguiente forma:

$$\min_{\Delta u} \sum_{i=1}^{p} (\hat{y}(k+i) - y_{sp})^{T} Q(\hat{y}(k+i) - y_{sp}) + \sum_{j=1}^{m} \Delta u(k+j-1)^{T} R \Delta u(k+j-1)$$
(1)

sujeto a:

$$-\Delta u_{\max} \le \Delta u(k+j-1) \le \Delta u_{\max}, \quad j = 1, \cdots, m$$

$$u_{\min} \le u(k-1) + \sum_{i=i}^{j} \Delta u(k+j-1) \le u_{\max}, \quad j = 1, \cdots, m$$
(2)

donde:

 $\hat{y}(k+i)$ es el valor predicho de la salida, considerando el efecto de las acciones de control futuras, y_{xp} es el setpoint o valor deseado, $\Delta u(k+i-1) = u(k+i-1) - u(k+i-2)$ es el incremento en las entradas, es el horizonte de optimización o de predicción del controlador, es el horizonte de control, es el límite máximo de incremento en las entradas, y son los límites máximo y mínimo de las entradas; y, Q y son matrices diagonales de ponderación positiva definida y positiva semi-definida, respectivamente.

Por conveniencia, la ecuación (1) puede ser escrita en la forma matricial compacta como:

$$\min_{\Delta u_k} \quad J = e^T Q e + \Delta u_k^T R \Delta u_k \tag{3}$$

En el caso del DMC se puede demostrar que e= $-S\Delta u_k + e_k'$, y por tanto el problema (3) queda de la siguiente forma:

$$\min_{\Delta u_{k}} J = \Delta u_{k}^{T} \left(S^{T} Q S + R \right) \Delta u_{k} + 2 \left((e_{k})^{T} Q S \right) \Delta u_{k}$$
(4)

donde:

- $\Delta u_k = [\Delta u(k)^T \cdots \Delta u(k+m-1)^T]^T \in \mathbb{R}^{mnw}$ es el vector de variaciones de las acciones de control y *nu* es el número de variables manipuladas (entradas).

- $S \in \mathbb{R}^{(p,ny)(m,nu)}$ es la matriz dinámica que contiene el modelo del proceso y ny es el número de variables controladas (salidas).

- $Q \in \mathbb{R}^{(p,ny)(p,ny)}$ es la matriz diagonal de factores de peso de las variables controladas.

- $R \in \mathbb{R}^{(m,mu)(m,mu)}$ es la matriz diagonal de factores de supresión de las variaciones de las acciones de control.

 $e_{k}' = -[y_{sp} - \tilde{y}_{k}] \in \mathbb{R}^{(p,ny)}$ es el vector de errores entre el valor deseado y los valores predichos si no hay ninguna acción de control futura y \hat{y}_{k} es el vector de predicción debido a las acciones de control pasadas.

El problema de minimización (4) sujeto a restricciones (2) es resuelto usando programación cuadrática (QP). Note que solo el primer elemento de Δu_k es aplicado a la planta.

IV. OPTIMIZACIÓN ESTACIONARIA

La optimización en estado estacionario soluciona, en el mismo instante de muestro del controlador MPC, un problema de programación lineal (LP) o QP con restricciones, usando un modelo en estado estacionario del proceso (consistente con el modelo dinámico usado en el MPC) e informaciones provenientes del controlador. El resultado de la optimización estacionaria (setpoints para las variables controladas y/o *targets* para las variables manipuladas) es enviado al MPC para su implementación.

En general, la optimización estacionaria LP (o QP) establece una ligazón entre el RTO y el MPC (ver Figura N.º 1), haciendo ajustes en los valores óptimos provenientes del RTO, en respuesta a perturbaciones o cambios en las condiciones operacionales, además de proporcionar una posible solución en estado estacionario para el controlador (que satisface todas las restricciones dando estabilidad al MPC) sin que el proceso haya alcanzado tal condición. La optimización estacionaria también da un alto grado de robustez; proporciona un desempeño libre de offsets (en las variables controladas y en las variables manipuladas) independiente de los pesos en la función objetivo del MPC; permite la opción de especificar qué variables controladas son operadas por setpoint o cuales son operadas por bandas; permite controladores no cuadrados y opera variables integradoras conjuntamente con variables estables (Sorensen e Cutler, 1998; Bezerra et al., 1998, 1999).

La principal diferencia entre una optimización estacionaria LP y QP, es que la solución LP estará en la intersección de las restricciones. Cuando una perturbación entra al proceso, el punto óptimo se puede mover. Usando LP, esto puede resultar en un salto de una intersección para otra, i.e. los setpoints/targets pueden cambiar abruptamente, lo que es perjudicial para la estabilidad del controlador. Por otro lado, con la QP, este tipo de situación es menos probable de suceder y, por tanto, la performance del sistema entero será mejor. En el caso que las dinámicas de las perturbaciones sean muy rápidas, un filtro tiene que ser diseñado para tratar de suavizar los cambios en los setpoints/targets. Otra desventaja de la optimización LP es que el problema LP puede tener múltiples soluciones (e.g. la solución puede estar a lo largo del posible polígono de la región viable). En este caso, tenemos que usar una técnica apropiada para seleccionar apenas una solución del conjunto de soluciones que será pasada al MPC. Por el contrario, con la QP solo habrá una única solución (Ying y Joseph, 1999; Qin y Badgwell, 2003).

La formulación de la optimización estacionaria puede envolver la minimización de la desviación entre los valores óptimos provenientes de la RTO y los *setpoints/targets* a ser implementados por el MPC (*target calculation*) o, directamente, la optimización de un criterio económico (*economic optimization*). En el presente estudio, considerando el primer caso y que la RTO no existe, se propone una optimización estacionaria QP en dos etapas. En la primera etapa se busca solucionar el siguiente problema:

$$\min_{u_{ss}} (u_{ss} - u(k-1))^T Q_1 (u_{ss} - u(k-1)) + Q_2 \cdot (u_{ss} - u(k-1))$$
(5)

sujeto a:

$$y_{ss} = Gu_{ss} + d_s$$

$$d_s = \hat{y}(k+n) - Gu(k-1)$$

$$u_{\min} \le u_{ss} \le u_{\max}$$

$$y_{\min} \le y_{ss} \le y_{\max}$$
(6)

donde: u(k - 1) es la última acción de control que ha sido implementada; k es el instante actual; u se el vector de targets en estado estacionario para las variables manipuladas; y_{ss} es el vector de salidas predichas en estado estacionario; $\hat{y}(k + n)$ es la predicción de las salidas controladas en el instante k+n (n es el horizonte de estabilización del proceso en lazo abierto o horizonte del modelo); d_s es el valor de la perturbación en estado estacionario (model bias); y, G es la matriz de ganancias en estado estacionario del proceso (Kassmann y Badgwell, 2000); y_{max} y y_{min} son los límites máximo y mínimo de las salidas controladas; y, Q, y Q, son matrices de ponderación de dimensiones apropiadas.

Como resultado de las restricciones, tanto en las variables controladas como en las manipuladas, el problema mostrado –encima– puede no tener solución. Esto sucede, principalmente, cuando una perturbación mueve una controlada (o la predicción de una controlada) para fuera de la región permitida definida por y_{max} y y_{min} . En este caso, será necesario relajar los límites máximo o mínimo. Por tanto, en la segunda etapa de la optimización estacionaria tentamos solucionar el siguiente problema:

$$\min_{\boldsymbol{u}_{ss}} \left(u_{ss} - u(k-1) \right)^T Q_1 \left(u_{ss} - u(k-1) \right) + Q_2 \cdot \left(u_{ss} - u(k-1) \right) + \left(y_{ss} - y_{max,min} \right)^T MQ \left(y_{ss} - y_{max,min} \right)$$

(7)

sujeto a:

$$y_{ss} = Gu_{ss} + d_s$$

$$d_s = \hat{y}(k+n) - Gu(k-1)$$

$$u_{\min} \le u_{ss} \le u_{\max}$$
(8)

donde: *M* es un número grande (e.g.10⁶); y los valores de Q son cero en los casos que los y_{ss} calculados en la primera etapa se encuentren dentro de la región permitida. Note que en la ecuación (8) las restricciones de la salida fueron removidas y fue incluido en la función objetivo (7) un término para minimizar esta salida.

V. OPTIMIZACIÓN INTEGRADA AL CONTROL

La estrategia de optimización de la Sección N.° 5 es resuelta simultáneamente con el control MPC. Los *targets* de entrada óptimos provenientes de la optimización estacionaria son enviados al MPC, cuya función objetivo es extendida con un término para ponderar la distancia entre el valor actual de la entrada y el target óptimo. Por tanto, el problema MPC de la ecuación (1) es re-formulado como sigue (Rotava y Zanin, 2005):

$$\min_{\Delta u} \sum_{i=1}^{p} \left(\hat{y}(k+i) - y_{sp} \right)^{T} \mathcal{Q} \left(\hat{y}(k+i) - y_{sp} \right) + \sum_{j=1}^{m} \Delta u(k+j-1)^{T} R \Delta u(k+j-1) +$$
(9)
$$\sum_{j=1}^{m} \left(u(k+j-1) - u_{ss} \right)^{T} R_{u} \left(u(k+j-1) - u_{ss} \right)$$

sujeto a las restricciones definidas en (2).

Considerando que las restricciones en las entradas pueden ser expresadas como:

$$\begin{bmatrix} u(k) \\ u(k+1) \\ \vdots \\ u(k+m-1) \end{bmatrix} = \begin{bmatrix} I_m & 0 & \cdots & 0 \\ I_m & I_m & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ I_m & I_m & \cdots & I_m \end{bmatrix} \begin{bmatrix} \Delta u(k) \\ \Delta u(k+1) \\ \vdots \\ \Delta u(k+m-1) \end{bmatrix} + \begin{bmatrix} u(k-1) \\ u(k-1) \\ \vdots \\ u(k-1) \end{bmatrix}$$
(10)

o en forma compacta como $u_k = N \Delta u_k + \overline{u}(k-1)$, la ecuación (9) puede ser escrita como:

$$\min_{\Delta u_{k}} J = \Delta u_{k}^{T} \left(S^{T} Q S + R + N^{T} R_{u} N \right) \Delta u_{k} + 2 \left((e_{k}')^{T} Q S + \overline{u}_{d}^{T} R_{u} N \right) \Delta u_{k}$$
(11)

donde: $\overline{u}d = \overline{u}$ (*k*-1)- $u_{ss} e R_u$ es una matriz diagonal de pesos para conducir las variables manipuladas para sus respectivos *targets*. La estructura del sistema integrado QP-QDMC es mostrado en la Figura N.° 3.

Figura N.º 3. Estructura del sistema integrado QP-QDMC.

En gran parte de las aplicaciones industriales, las salidas son controladas por bandas en vez de setpoints fijos. Esta estrategia es usualmente adoptada en los casos en que el número de salidas controladas es mayor que el número de entradas manipuladas, y como un intento de tener algunos grados de libertad que permitan llevar las entradas a sus *targets* óptimos (*constraint pushing*) y suavizar la respuesta del sistema. Para tener en cuenta el control por bandas, la ecuación (9) es modificada de la siguiente forma:

$$\min_{\Delta M} \sum_{i=1}^{P} \left(\hat{y}(k+i) - y^{b}(k+i) \right)^{T} Q\left(\hat{y}(k+i) - y^{b}(k+i) \right) + \frac{1}{2}$$

$$\min_{\Delta M} \sum_{i=1}^{P} \left(\hat{y}(k+i) - y^{b}(k+i) \right)^{T} Q\left(\hat{y}(k+i) - y^{b}(k+i) \right) + \frac{1}{2}$$

$$\sum_{l=1}^{M} \left(u(k+i-1) - u_{ss} \right)^{T} R_{M} \left(u(k+i-1) - u_{ss} \right)$$
(12)

Siguiendo a Sotomayor *et al.* (2008), la estrategia es implementada de la siguiente forma: Para cada salida *j*, observamos su predicción en el instante k+i:

- 1. Se $y_{j,\min} \le \hat{y}_j (k+i) \le y_{j,\max}$, la salida y_j debe ser ignorada (liberada o removida de los cálculos de control) en el instante k + i. Por tanto, el parámetro de la matriz Q, correspondiente a esa salida debe ser cero.
- 2. Se $\hat{y}_j(k+i) > y_{j,\max}$, la salida y_j debe ser traerse para su límite superior. Por tanto, hacemos $y_j^b(k+i) = y_{j,\max}$ y el parámetro de la matriz Q, correspondiente a esa salida, debe ser el parámetro de sintonía previamente establecida para el controlador.
- 3. Se $\hat{y}_j(k+i) < y_{j,\min}$, la salida y_j debe traerse para su límite inferior. Por tanto, hacemos $y_j^b(k+i) = y_{j,\min}$ y el parámetro de la matriz Q, correspondiente a esa salida, es seleccionada como en el caso anterior.

El sistema integrado optimización-MPC como ilustrado en la Figura N.º 3 es comúnmente denominado de "MPC de dos fases" y es implementado, con algunas modificaciones, en el software de control avanzado SICON de Petrobras y en la mayoría de los paquetes comerciales MPC, tales como DMC-plus de Aspen Tech, Connoisseur de Invensys y RMPCT de Honeywell (Para informaciones sobre estrategias de optimización integrado al control ver: Backx *et al.* (2000), Zanin *et al.* (2002), Lacerda *et al.* (2004) y Engell (2007)).

VI. CONTROL QP-QDMC DE LA PLANTA TE

La operación de la planta TE es extremamente compleja. Existen varias restricciones operacionales que deben ser mantenidas dentro de ciertos limites mínimos y máximos. El desempeño del sistema depende altamente de la estructura de control seleccionada. En esta sección, el sistema integrado QP-QDMC como descrito anteriormente es aplicado a este proceso.

Para esto, el trabajo de Larsson et al. (2001) es tomado como referencia. Larsson et al. (2001) implementaron un sistema de control descentralizado para la planta TE, operando en el caso base 50/50 optimizado (Ricker, 1995), basado en una serie de controladores PID en cascada. En el presente trabajo, los controladores PID maestros de los sistemas en cascada son retirados y substituidos por el sistema QP-QDMC, conforme es mostrado en la Figura N.º 4. Como puede ser observado, se trata de un sistema de control con 7 entradas manipuladas y 6 salidas controladas. El modelo del proceso es obtenido por aplicación individual de un escalón en las variables manipuladas. El modelo obtenido, en la forma de matriz de funciones de transferencias, es normalizado antes de ser usado en el QDMC. La descripción de las variables manipuladas y controladas es presentado en la Tabla N.º 1 y los parámetros de sintonía del controlador QP-QDMC son listados en la Tabla N.º 2.

	Tabla N.º 1.	. Variables del	sistema de	control QP	-QDMC de	la planta TE.
--	--------------	-----------------	------------	------------	----------	---------------

Variables manipuladas	Variables controladas
<i>u</i> ₁ Setpoint del flujo de alimentación de A	y ₁ Flujo de reciclo (kscmh)
<i>u</i> ₂ Setpoint del flujo de alimentación de D	y_2 %G en el producto (o calidad)
u ₃ Setpoint del flujo de alimentación de E	y ₃ %C en la purga
u ₄ Setpoint del flujo de alimentación de C	y ₄ Presión en el reactor (KPa)
$u_{_{5}}$ Setpoint del flujo de la purga	y ₅ Temperatura en el reactor (°C)
<i>u</i> ₆ Apertura válvula de refrigerante al reactor	y_6 Flujo de producto (o veloc. Producción) (m ³ /h)
u ₇ Flujo total de alimentación	

Figura 4. Estructura QP-QDMC implementado en la planta TE.

Parámetro	Descripción	Valor
T_s	Tiempo de muestreo	0.2 h
n	Horizonte del modelo	500
p	Horizonte de predicción	250
m	Horizonte de control	10
$\Delta u_{\rm max}$	Límite máx. incremento en las en- tradas	$\begin{bmatrix} 0.002 & 3.2 & 4.6 & 0.0034 & 0.002 & 5 & 10 \end{bmatrix}^T$
u_{\max}	Límite máx. de las entradas	$\begin{bmatrix} 0.01 & 57.92 & 83.28 & 0.1171 & 0.0084 & 100 & 120 \end{bmatrix}^{T}$
umir	Límite min. de las entradas	$\begin{bmatrix} 0 & 0.32 & 0.46 & 0.001 & 0.0001 & 0 & 80 \end{bmatrix}^T$
y _{max}	Límite máx. de las salidas	$\begin{bmatrix} 38 & 55.3 & 19 & 2900 & 175 & 23.89 \end{bmatrix}^T$
<i>p</i> _{mir}	Límite mín. de las salidas	$\begin{bmatrix} 28 & 52.3 & 7 & 2700 & 75 & 21.89 \end{bmatrix}^{T}$
Q	Matriz de ponderación de prediccio- nes de las salidas	diag([0.5 0.3 0.1 3 3 0.5])
R	Matriz de factores de supresión de incrementos en las entradas	diag([^{10 5} 10 20 2 10 5])
R_{μ}	Matriz de ponderación de la distan- cia entre la entrada calculada y el target óptimo	diag([^{5 1 1 5 5 1 1}]) ₎
Q	Matriz de ponderación de incremen- tos en las entradas	diag([10 10 10 10 10 10 10])
Q2	Vector de coeficientes de costo de las variables manipuladas	$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}^{r}$
М	Factor usado en la optimización estacionaria	10 ⁶

Tabla N.º 2. Parámetros de sintonía del controlador QP-QDMC.

El desempeño del sistema controlado es testado para variaciones en las condiciones de operación y perturbaciones no medidas. En el primer caso, para una corrida de 160 horas, las bandas de operación de las variables controladas y₂ (%G en el producto o calidad) y y_{e} (flujo de producto o velocidad de producción) son cambiadas en forma de rampas. Las respuestas del proceso son mostradas en la Figura N.º 5, donde puede observarse que las variables controladas y_{a} y y_{c} siguen el perfil trazado por sus bandas operacionales y son mantenidas dentro de ellas, al igual que las otras salidas controladas. En la variación de la banda operacional de y_2 , la variable y_4 (presión en el reactor) escapa un poco de su límite máximo de operación; mas, luego, es traído para dentro de su rango operacional. Las respuestas de las

variables manipuladas del controlador QP-QDMC son mostradas en la Figura N.° 6.

En el segundo caso, durante una corrida de 100 horas ocurren 2 perturbaciones. Entre 20-40 h, hay una cinética lenta de la reacción (perturbación 13); y entre 60-80 h, hay una variación aleatoria en la composición de los componentes A, B y C de la alimentación (perturbación 8). En general, Si todas las salidas son mantenidas dentro de su banda operacional, con excepción de la variable y_{A} (presión en el reactor), que durante la perturbación 13 oscila llegando casi al límite máximo de seguridad de 3000 KPa, siendo luego traída para dentro de su zona de operación. Durante la ocurrencia de la perturbación 8, la salida y_3 (%C en la purga) también escapa un poco de su límite máximo

Figura N.º 5. Variables controladas del sistema QP-QDMC para el seguimiento de calidad y velocidad de producción.

Figura N.º 6. Variables manipuladas del sistema QP-QDMC para el seguimiento de calidad y velocidad de producción

de operación; mas luego, esta situación es controlada por el QP-QDMC. El perfil de las variables manipuladas del controlador son mostradas en la Figura N.° 8. Para mayores detalles sobre la implementación e influencia de las perturbaciones 8, 13 y otras, referirse a Downs y Vogel (1993).

VII. CONCLUSIONES

En la era de la globalización y alta competitividad del mercado, herramientas tales como optimización y MPC son fundamentales para el control óptimo de procesos. Actualmente, aplicaciones industriales de MPC integran la presencia de una etapa de optimización estacionaria, que ajusta los valores óptimos provenientes de la etapa de RTO y proporciona una solución viable en estado estacionario para el controlador. El presente trabajo muestra el desarrollo de las etapas optimización estacionaria (QP para *target calculation*) y MPC (QDMC); y como ambas etapas son integradas formando un controlador "MPC de dos fases", comúnmente implementado en la mayoría de los paquetes comerciales MPC.

El controlador QP-QDMC, con estrategia de control de las salidas por bandas, es aplicado a la planta TE. Los resultados de las simulaciones muestran los beneficios económicos del sistema propuesto ante cambios en las condiciones de operación y perturbaciones no medidas, asegurando que la planta opere dentro de sus restricciones, con perfiles suaves de respuestas tanto en las entradas manipuladas como en las salidas controladas.

Figura N.º 7. Variables controladas del sistema QP-QDMC para el rechazo de secuencia de perturbaciones 13 y 8.

Figura N.º 8. Variables manipuladas del sistema QP-QDMC para el rechazo de secuencia de perturbaciones 13 y 8.

VIII. REFERENCIAS BIBLIOGRÁFICAS

- Backx T, Bosgra O, Marquardt W. (2000). Integration of model predictive control and optimization of processes. In: Proceedings of the 6th IFAC International Symposium on Advanced Control of Chemical Processes (ADCHEM 2000), Pisa, Italy.
- [2] Becerra VM, Roberts PD, Griffiths GW. J Proc Cont 1999; 8(2): 117-138.
- [3] Becerra VM, Abu-el-zeet ZH, Roberts PD. Comp Cont Eng J 1999; 10(5): 198-208.
- [4] Camacho EF, Bordons C. Rev Iberoam Autom Inform Ind 2004; 1(3): 5-28.
- [5] Downs JJ, Vogel EF. Comp Chem Eng 1993; 17(3): 245-255.
- [6] Eaton JW, Rawlings JB. Chem Eng Scien 1992; 47(4): 705-720.
- [7] Engell S. J Proc Cont 2007; 17(3): 203-219.
- [8] García CE, Morshedi AM. Chem Eng Comm 1986; 46(1-3): 73-87.
- [9] García CE, Prett DM, Morari M. A survey. Automatica 1989; 25(3): 335-348
- [10] Kassmann DE, Badgwell T.A. AIChE Journal 2000; 46(5): 1007-1024.

- [11] Lacerda AI, Araújo OQF, Medeiros JL. Bol Téc Petrobras 2004; 47(2-4): 166-192.
- [12] Larsson T, Hestetun K, Hovland E, Skogestad S. Ind Eng Chem Research 2001; 40(22): 4889-4901.
- [13] Morari M, Lee JH. Comp Chem Eng 1999; 23(4-5): 667-682.
- [14] Nikandrov A, Swartz CLE. *J Proc Cont* 2008 (en impresión).
- [15] Qin SJ, Badgwell TA. Cont Eng Pract 2003; 11(7): 733-764.
- [16] Rawlings JB. IEEE Cont Syst Mag 2000; 20(3): 38-52.
- [17] Ricker NL. Comp Chem Eng 1995; 19(9): 949-959.
- [18] Rotava O, Zanin A. Hydrocarbon processing 1995; 84(6): 61-71.
- [19] Skogestad S. Comp Chem Eng 2004; 28(1-2): 219-234.
- [20] Sorensen RC, Cutler CR. Hydrocar Process 1998; 77(9): 57-65.
- [21] Sotomayor OAZ, Odloak D, Moro LFL. Control Engineering Practice 2008 (en evaluación).
- [22] Ying CM, Joseph B. AIChE Journal 1999; 45(7): 1521-1534.
- [23] Zanin AC, de Gouvêa MT, Odloak D. Cont Eng Pract 2002; 10(8): 819-831.