New records of megachilid bees (Hymenoptera: Megachilidae) for Colombia

Diego A. Guevara* 1
https://orcid.org/0000-0002-4927-6388
daguevaraf@unal.edu.co

Rodulfo Ospina-Torres 1
https://orcid.org/0000-0002-0492-3027
rospinat@unal.edu.co

Víctor H. González 2
https://orcid.org/0000-0002-4146-1634
vhgonza@ku.edu

*Corresponding author
1: Departamento de Biología, Universidad Nacional de Colombia, Cra 45 #26 85 Bogotá, D.C., Colombia.
2: Undergraduate Biology Program and Department of Ecology & Evolutionary Biology, 1200 Sunnyside Avenue, University of Kansas, Lawrence, Kansas 66045-7566, U.S.A.

Abstract
The bee family Megachilidae consists of solitary species, some of which are important pollinators of cultivated plants. Although literature records indicate the existence of about 50 species of 10 genera of megachilid bees in Colombia, taxonomic studies are lacking and thus limited information is available on their identity as well as their distribution in the country. Herein, we provide new geographical records for the following ten species: Anthidium sanguinicaudum Schwarz, Chelostomoides otomita (Cresson), Hoplostelis bilineolata (Spinola), Megachile amparo Gonzalez, M. kalina Gonzalez et al., M. lorenziensis Mitchell, M. moderata Smith, M. simillima Smith, Pseudomegachile lanata (Fabricius), and Stelis costaricensis Friese. We report M. kalina for the first time for the country.

Keywords:
Leaf-cutter bees, wool carder bees, Anthidiini, Megachilini, Apoidea.

Resumen
Las abejas de la familia Megachilidae son especies solitarias, algunas de ellas importantes polinizadores de cultivos. Aunque en la literatura se registran cerca de 50 especies de 10 géneros de abejas megachilidas en Colombia, faltan estudios taxonómicos y, por lo tanto, se dispone de información limitada sobre la identidad y la distribución de este grupo en el país. En este trabajo proporcionamos nuevos registros geográficos para 10 especies poco conocidas [Anthidium sanguinicaudum Schwarz, Chelostomoides otomita (Cresson), Hoplostelis bilineolata (Spinola), Megachile amparo Gonzalez, M. kalina Gonzalez et al., M. lorenziensis Mitchell, M. moderata Smith, M. simillima Smith, Pseudomegachile lanata (Fabricius), y Stelis costaricensis Friese]. Megachile kalina se registra por primera vez para Colombia.

Palabras clave:
Abejas cortadoras de hojas, abejas cardadoras de lana, Anthidiini, Megachilini, Apoidea.

Introduction
Megachilidae is one of the five bee families currently known in Colombia (Gonzalez & Engel 2004, Smith-Pardo 2003, Ascher & Pickering 2019). It consists of solitary species that nest in pre-existing cavities in the ground, stems, twigs, and artificial substrates. Bees of this family use diverse nesting materials to build their nests, including pebbles, leaves (masticated or in pieces), plant hairs, petals, and mud. The family is cosmopolitan in distribution and contains a similar number of described species to that of Halictidae (Michener 2007, Gonzalez et al. 2012a, b). Some megachilid species are invasive in many areas of the world while others are efficient pollinators, such as Megachile rotundata (Fabricius), which is used in alfalfa pollination.
Megachilidae is the third richest bee family in Colombia. Literature records indicate the existence of about 600 species of bees in the country, of which 50 of them (10 genera and 3 tribes) are Megachilidae, about half the number species of halictid bees recorded for Colombia (e.g., Smith-Pardo 2003, Ascher & Pickering 2019). However, most taxonomic studies in the country are on a few groups of bees in the most species-rich family, Apidae, namely stingless bees (Meliponini), bumble bees (Bombini), and orchid bees (Euglossini) (e.g., Lieve et al. 1991, Bonilla-Gómez & Nates-Parra 1992, Ospina-Torres 1998, Nates-Parra 2005, Nates-Parra & Rosso-Londoño 2013). To date, a good number of taxa in these groups can be identified at the species level and published information exists on their distribution. However, all together these groups of bees represent only about one-third of the total number of species in the country. Thus, we know little to almost nothing about the remaining two-thirds of Colombian’s bees.

The current species number of megachilids in Colombia does not represent its true richness. For example, in the most intensive bee inventory conducted until today in any ecosystem in Colombia, Smith-Pardo and Gonzalez (2007) recorded 287 species of which 35 of them were Megachilidae. That is about 70% of the number of megachilid species recorded for the entire country. Given that Smith-Pardo and Gonzalez (2007) surveyed bees in lowland tropical rain forests of Porce, Antioquia, the richness of Megachilidae is expected to be much higher when other ecosystems, such as dry tropical forests, are thoroughly surveyed. In addition, recent studies on this family have yielded several new species (e.g., Gonzalez et al. 2012a, b, Gonzalez et al. 2018), as well as new records that significantly extended the distribution of some taxa in the Americas. For example, the discovery of Heriades tayrona in northern Colombia extended the distribution of the tribe Osmiini for South America (Gonzalez & Griswold 2011).

Considering the limited information on Colombian megachilid bees, the purpose of this contribution is to make available new geographical records for some little-known Colombian species.

Material and methods

We followed the classification of Michener (2007) for Anthidiini and that of Gonzalez et al. (2019) for Megachilini. To map the distribution of each species, we used the geographical coordinates associated with specimen labels and, for records that did not have exact geographical information, we used Google Earth (Google, Mountain View, CA, USA) to acquire their coordinates. We generated maps using SimpleMapper (Shorthouse 2010). For each species, we complemented its distribution by searching in GBIF (www.gbif.org) and SpeciesLink (www.specieslink.net). We reproduced label data as appearing on the labels attached to the same specimen. We separated information on different labels by a single slash (/) and indicated annotations to clarify information in square brackets. To avoid repetition of label data, we used “ut supra” (as above) to indicate the same information in the preceding label. We used the following institutional acronyms for repositories holding specimens studied:

ICN: Instituto de Ciencias Naturales Zoología, Bogotá, D.C., Colombia (F. Fernández).

LABUN: Laboratorio de Investigación en abejas de la Universidad Nacional Bogotá, D.C., Colombia (R. Ospina).

MPUJ: Museo Javeriano de Historia Natural Lorenzo Uribe, S.J., Universidad Javeriana, Bogotá, D.C., Colombia (D. Forero).

SEMC: Division of Entomology (Snow Entomological Collection), University of Kansas Natural History Museum, Lawrence, Kansas, USA (M.S. Engel, Z. Falin).

UNAB: Museo Entomológico, Universidad Nacional Agronomía Bogotá, Colombia (F. Serna).

Results

ANTHIDIINI

(Fig. 1)

GENUS ANTHIDIUM FABRICIUS

1. Anthidium sanguinicaudum Schwarz

Anthidium sanguinicaudum Schwarz, 1933:624 [♂]

Comments. Anthidium Fabricius contains more than 160 species worldwide. Gonzalez and Griswold (2013) revised the fauna of the Western Hemisphere and recognized 92 species, including the two adventive taxa, A. oblongatum (Illiger) and A. manicatum (Linnaeus). Species of Anthidium occur from Alaska to Argentina, from sea level to more than 4000 m in the Andes, mainly in xeric regions. In Colombia, Gonzalez and Griswold (2013) recorded a single species, A. sanguinicaudum. These authors considered A. loboguerrerro Urban from Valle del Cauca, Colombia, as a color variant of A. sanguinicaudum. These new records expand the distribution of this species from its previously known range: Colombia: Valle del Cauca, Antioquia, Huila; Venezuela; Suriname (Gonzalez & Griswold 2013).
New records of megachilid bees (Hymenoptera: Megachilidae) for Colombia

Genus *Hoplostelis* Dominique

2. *Hoplostelis (Hoplostelis) bilineolata* (Spinola)

Anthidium bilineolatum Spinola (1841: 141 [♂])

Material examined (*n* = 8 ♀, 3 ♂). **Colombia**: Boyaca: 4 ♀, 1 ♂, Buenavista, vereda La Herradura, 5°28’31” 74°00’37” W, 879 msnm, 05-01-2014 [05 Jan. 2014]. **Cundinamarca**: 1 ♂, Anolaima, 4°45’51” N 74°28’08” W, 1650m n[msnm], 15 May. 2005; 1 ♂, Arbelaez, 1300m [msnm], 28 ene. 1999. **Santander**: 2 ♀, Floridablanca, casino, Finca Las Brisas, 1160m [msnm], col: G. Nates & A. Parra / 18147, 48 / LABUN005538, 39; 1 ♀ Cimitarra, Hacienda El Paraiso, 6°44’9’’ N 74°28’2” W, 26 Apr. 2016.

Comments. This new record expands the distribution of this species from its previously known range: Colombia: Valle del Cauca; Costa Rica; Guatemala; Honduras; Mexico (Gonzalez et al. 2012, Urban & Moure 2012).

Genus *Stelis* Panzer

3. *Stelis (Dolichostelis) costaricensis* Friese

Stelis (Protostelis) costaricensis Friese (1921:36 [♀, ♂])

Material examined (*n* = 1 ♀, 3 ♂). **Colombia**: **Cundinamarca**: 1 ♂, Anolaima, vereda Santa Barbara, 07-16-2016 [16 Jul. 2016] [without label data] (LABUN); 1 ♂, Arbelaez, hacienda Paramillo, 31 V 80 [31 May. 1980]; 1 ♀, 1 ♂ Pacho, 11 III 78 [11 Mar 1978].

Comments. This new record expands the distribution of this species from its previously known range: Colombia: Valle del Cauca; Costa Rica; Guatemala; Honduras; Mexico (Gonzalez et al. 2012, Urban & Moure 2012).

Megachilini

(Fig. 2)

Genus *Chelostomoides* Robertson

4. *Chelostomoides otomita* (Cresson)

Chalicodoma (Chelostomoides) Cresson (1778:123 [♂])

Material examined (*n* = 1 ♂). **Colombia**: **Magdalena**: 1 ♂, Taganga, 16 Jan. 2015.

Comments. This new record expands the distribution of this species from its previously known range: Belize; Colombia: Antioquia, Valle del Cauca; Costa Rica; El Salvador; Guatemala; Honduras; Mexico; Nicaragua (Urban & Moure 2012, Ascher & Pickering 2019).
Genus Megachile Latreille

Megachile (Cressoniella) Mitchell

5. Megachile (Cressoniella) amparo Gonzalez

Megachile (Cressoniella) amparo Gonzalez (2006:95 [♀, ♂])

Comments. This species is commonly found on both rural and urban areas along Bogotá’s high plain (Gonzalez 2006). The species is polylectic and presumably active year round. Rodriguez-C et al. (2021) studied the pollination of brood cells of a population established at the Jardín Botánico de Bogotá José Celestino Mutis in the city of Bogotá. These authors found pollen of Monnina sp. [Polygalaceae], Tropaeolaeum majus [Tropaeolaceae], and in less frequency pollen from Asteraceae, Maelasto-mataceae, and Passifloraceae. Megachile amparo has also been observed collecting pollen from Lupinus sp. [Fabaceae] and Taraxacum officinale (Asteraceae) (DA. Guevara, personal obs.).

Megachile (Leptorachina) Mitchell

6. Megachile (Leptorachina) lorenziensis Mitchell

Megachile (Leptorachina) lorenziensis Mitchell (1930:124 [♀])

Comments. This new record expands the distribution of this species from its previously known range in Magdalena, Colombia (Mitchell 1930).

Megachile (Rhyssomegachile) Mitchell

7. Megachile (Rhyssomegachile) simillima Smith

Megachile simillima Smith, 1853:185 [♀]

Material examined (n = 2♀). Colombia: Vaupés: 2♀, Mitú, San Antonio, 300 msnm, 0°40’48.6” N 70°26’9.1” W, 11-18-2010 [18 Nov. 2010].

Comments. This new record expands the distribution of this species from its previously known range: Argentina; Bolivia; Brazil; Colombia: Amazonas; Ecuador; Venezuela (Gonzalez et al. 2018).

Megachile (Zonomegachile) Mitchell

8. Megachile (Zonomegachile) kalina Gonzalez, Griswold and Engel

Megachile (Zonomegachile) kalina Gonzalez, Griswold and Engel, 2018:43 [♀]

Material examined (n = 1♀). Colombia: Vichada: 1♀, Gaviotas [Las Gaviotas], 18-v-85 [18 May. 1985].

Comments. This new record expands the distribution of this species from its previously known range: French Guiana (Gonzalez et al. 2018).

9. Megachile (Zonomegachile) moderata Smith

Megachile (Zonomegachile) moderata Smith (1879:74 [♀])

Comments. This new record expands the distribution of this species from its previously known range: Bolivia; Brazil; Colombia: Amazonas; Ecuador; French Guiana; Peru (Gonzalez et al. 2018).

Genus Pseudomegachile Friese

10. Pseudomegachile lanata (Fabricius)

Pseudomegachile lanata Fabricius (1775:109 [♀])

Material examined (n = 3♂). Colombia: Cesar: Valledupar, Badillo, Rio Mojaco, 10.623358, -73.127829, 179 msnm, 12 Apr. 2022. Meta: 1♂, Puerto López, finca la Libertad, Corpoica, N 4°05’ W 72° 57’, 365 m alt [msnm].

Comments. Gonzalez et al. (2019b) reported this adventive Indian species from the same locality in Meta, but from a specimen collected in 2015. The specimen recorded here was collected on 2011, thus suggesting an earlier establishment of this species in the region.
Figure 2. Map showing the collecting localities of Megachilini in Colombia.

Literature cited

Gonzalez VH. 2006. Dos especies nuevas de abejas (Hymenoptera) de la ciudad de Bogotá (Colombia)/Two new bee species (Hymenoptera) from Bogotá city (Colombia). Revista Colombiana de Entomología, 32(1):93.

Shorthouse DP. 2010. SimpleMappr, an online tool to produce publication-quality point maps. [Accessed April 28, 2021]. https://www.simplemappr.net

Agradecimientos / Acknowledgments:

We are grateful for the efforts of two anonymous reviewers who provided helpful input on the manuscript. Michael S. Engel and Zach Falin (SEMC) for their constant help and support throughout the project. This is a contribution of the Laboratorio de Investigaciones en Abejas (LABUN), Universidad Nacional de Colombia and the Division of Entomology, University of Kansas Natural History Museum, U.S.A.

Conflicto de intereses / Competing interests:

The authors declare no conflict of interest.

Rol de los autores / Authors Roles:

DAG, RO-T, VHG: Conceptualization, Research, Writing - Preparation of the original draft, Writing: proofreading and editing.

Fuentes de financiamiento / Funding:

V.H.G. received partial support through a National Science Foundation (NSF), Research Experiences for Undergraduates (REU) program (DBI 1560389).

Aspectos éticos / legales; Ethics / legals:

Authors declare that they did not violate or omit ethical or legal norms in this research.