Degradación de tiocianato por hongos aislados de ambientes mineros y evaluación de su capacidad degradativa

The thiocyanate degradation by fungi isolated from mining environments and evaluation of degradative capacity

Susan Medina¹, Marisela Torres¹, Yerson Durán¹, Rina Ramírez², Juan Herrera¹ y Pablo Ramírez^{1*}

Resumen

1 Laboratorio de Microbiología Molecular y Biotecnología, 2 Laboratorio de Sistemática Molecular y Filogeografía. Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos. Avenida Venezuela s/n, Lima 1, Perú.

Autor para correspondencia: Pablo Ramírez, E-mail: pramirezr@unmsm.edu.pe

 Presentado:
 05/01/2012

 Aceptado:
 05/08/2012

 Publicado online:
 01/10/2012

El Perú es uno de los principales países en la extracción de minerales como el oro, zinc, plomo y estaño. En la producción de oro se utiliza cianuro, el cual es tóxico para el medio ambiente, y que por reacción natural con el azufre se convierte en tiocianato (⁻SCN). En el presente trabajo se aislan hongos con capacidad de degradar tiocianato procedentes de aguas y suelos de zonas mineras de Junín y Tumbes. Estas cepas se sometieron a ensayos con concentraciones de tiocianato entre 5 y 600 mM. Asimismo, se evaluó la cinética de degradación de tiocianato en medio Kwon partiendo de 1,2 g.L⁻¹ de KSCN y luego se realizó la identificación morfológica. De un total de 58 mohos aislados, obtuvimos 4 mohos con excelentes capacidades de degradar tiocianato y que pueden ser utilizados en biorremediación. La capacidad degradativa de estas cepas fue en promedio 10,05 mg.L⁻¹ de -SCN con una velocidad de 28,77 mg.L⁻¹.h⁻¹. Dos cepas fueron identificadas fenotípica y molecularmente como *Fusarium trincictum* usando el marcador ITS del gen rDNA.

Palabras claves: tiocianato, hongos, Fusarium trincictum, degradación, mineria.

Abstract

Peru is one of the principal countries in mining extraction of minerals like gold, zinc, plumb and tin. Cyanide is used in gold production this compound is very toxic especially for environment, by nature reaction with sulfur it converts into thiocyanate (SCN). In this paper, we isolate SCN degrading fungus from Junin and Tumbes mining zones. Strains were assayed on 5 to 600 mM SCN concentration, at least thiocyanate degrading kinetic was assayed at 1.2 g.L⁻¹ of KSCN initial concentration, then the best strains had been morphological, biochemical and molecular identified using ITS RNA molecular marker. From 58 isolated fungus we found 4 unparfait funguses with a great thiocyanate degrading capacity those strains could be used for bioremediation processes. Thiocyanate degrading capacity of these strains was 50 g.L⁻¹ on plate into 72 hours and their average capacity was 10.05 mg.L⁻¹ SCN with an standard velocity of SCN degradation of 28.77 mg.L⁻¹.h⁻¹. Two strains were molecular identified as *Fusarium trincictum* by using ITS rDNA gene.

Keywords: thiocyanate, fungus, Fusarium trincictum, degradation, mining.

Introducción

El tiocianato (SCN) es un intermediario de la conversión del cianuro por una reacción de adición de azufre (Sorokin et al. 2004). En dosis bajas el tiocianato es menos tóxico que el cianuro, pero es altamente tóxico cuando la dosis exceden los 0.3 g.L⁻¹ (Boucabeille 1994). En peces se ha probado que este compuesto causa alteración en el equilibrio, la presión osmótica y la respiración, los individuos sometidos a concentraciones mayores a 10 mM de tiocianato presentan mareos, alteraciones en las comunicaciones cerebrales, pérdida de equilibrio y orientación. Al igual que el cianuro, el tiocianato es biodegradable por microorganismos.

La existencia de microorganismos con actividad de degradar tiocianato ha sido descrita, entre ellos tenemos a bacterias como *Thiobacillus thioparus* (Katayama et al. 1992), *Pseudomonas y Acinetobacter* (Dubey & Holmes 1995) y hongos como *Acremonium* (Kwon et al. 2002), *Trichoderma harzianum* (Faull et al. 1994), *Fusarium solani, F. oxysporum, Trichoderma polysporum, Scytalidiym thermophilum y Penicilium miczynski* (Barclay et al. 1998) que pueden degradar productos derivados del cianuro, entre ellos los tiocianatos. Estos microorganismos han desarrollado mecanismos metabólicos para la degradación de estos compuestos utilizando enzimas como las cianasas que producen como productos finales amonio y dioxido de carbono (Dorr & Knowles 1989), cianuro hidratasas (Clunnes et al. 1993) que conjuntamente con las amidasas convierten el cianuro hasta formato (Dumestre et al. 1997), otros microorganismos utilizan las rodanasas (Ezzi & Lynch 2002; Ramírez et al. 2002), esta reacción puede ser relevante en la desintoxicación del cianuro en los organismos vivos (Ramírez et al. 2002; Bordo & Bork 2002). El tiocianato se halla en los desechos industriales del procesamiento del carbón y de la extracción del oro y la plata conjuntamente con otros compuestos tóxicos como el cianuro libre y cianuro acomplejado a metales (Boucabeille et al. 1994). Pocas investigaciones se han realizado sobre la degradación del "SCN por cultivos puros y en consecuencia, las vías metabólicas no se conocen aun en su totalidad.

Entre los hongos tenemos a *Acremonium strictum* que degradó 7,4 g.L⁻¹ de ⁻SCN y fue aislado de aguas servidas de la industria del carbón. Los productos finales fueron amonio y sulfato en una relación estequiométrica 1:1 (Kwon et al. 2002). Actualmente se encuentran algunos reportes del uso de microorganismos para el tratamiento de efluentes mineros que contienen cianuro o tiocianatos como en Brasil a nivel de birreactores (Souza-Fagundes et al. 2004). Los cultivos mixtos o consorcios removieron 5 mM de ⁻SCN en 36 horas. En este sentido, el conocimiento de los procesos de destoxificación del ⁻SCN y cianuro resultarán de mucha importancia para mejorar la conservación del ambiente

Tipo de muestra	Cepa	Medio de aislamiento	Características morfológicas de la colonia
Agua	5JA-500-1MK	Kwon	Moho rugoso, pulvurulento con exhudado.
	6JA-500-1M	M9	Moho blanco, pequeño, miceliar, redondo expansivo.
	6JA-500-2M	M9	Moho mediano redondo, blanco.
	9JA-500-1MK	Kwon	Moho rugoso, elevado, blanquecino con micelio, redonda.
Suelo	1JS-500-1M	M9	Moho liso, elevado, translúcido, con micelio aéreo largo, irregular.
	5JS-500-1MK	Kwon	Moho algodonoso, filamentoso.
	5JS-500-2MK	Kwon	Moho algodonoso, plano, blanquecino, micelio aéreo corto, redonda.
	6JS-500-1MK	Kwon	Moho pulverulento, elevado blanquecino, micelio aéreo largo, irregular.
	7JS-500-1MK	Kwon	Moho translúcido.
	7JS-500-2MK	Kwon	Moho rugoso, elevado, translucido con micelio irregular.
	11JS-500-1MK	Kwon	Moho liso, plano, blanquecino, micelio aéreo corto, redondo.
	12JS-500-1M	M9	Moho liso, elevado, blanquecino, micelio aéreo corto, irregular.
	14JS-500-1MK	Kwon	Moho pulverulento, elevado, translucido, micelio aéreo largo, irregular.
	3JSE-500-1M	M9	Moho rugoso, elevado, blanquecino, micelio aéreo corto, irregular.
	14JSE-500-1M	M9	Moho liso, plano, blanquecino, micelio aéreo largo, irregular.
	11JSE-500-1M	M9	Moho rugoso, elevado, translucido, micelio aéreo largo redondo.
0	3JSE-500-1MK	Kwon	Moho pulverulento, elevado, translucido con micelio, irregular.
Suelo enriquecid	3JSE-500-2MK	Kwon	Moho rugoso, plano, blanquecino, micelio aéreo largo, irregular.
	3JSE-500-3MK	Kwon	Moho pulverulento, elevado, blanquecino con micelio, redondo.
	5JSE-500-1MK	Kwon	Moho liso, plano, blanquecino, micelio aéreo corto, irregular.
	6JSE-500-1MK	Kwon	Moho rugoso, elevado, blanquecino con micelio, redondo.
	6JSE-500-2MK	Kwon	Moho pulverulento, plano, blanquecino, micelio aéreo corto, irregular.
	8JSE-500-2MK	Kwon	Moho liso, plano, blanquecino, micelio aéreo largo, irregular.
	9JSE-500-1MK	Kwon	Moho rugoso, elevado, blanquecino, micelio aéreo largo, redondo.
	11JSE-500-1MK	Kwon	Moho liso, elevado, blanquecino con micelio, redondo.
	11JSE-500-2MK	Kwon	Moho pulverulento, elevado, translucido, micelio aéreo corto, irregular.

Tabla 1. Características morfológicas de las colonias de los hongos filamentosos que crecieron hasta en 500 mM de tiocianato de potasio aislados del lago Chinchaycocha (Junín). La descripción fue realizada en agar M9 o agar Kwon, según se indica.

y a su vez la extracción de metales a partir de los minerales que los contienen.

Por otro lado, se están aplicando métodos moleculares en la identificación de los hongos. Éstos se basan en la comparación de las secuencias de nucleótidos de genes conservados, o de regiones conservadas de estos genes en una base de datos, la cual nos permite determinar la especie. En estos eucariontes usualmente se amplifica el gen 28S rRNA LSU que presenta tres regiones altamente polimórficas y también se amplifica las regiones espaciadoras o ITS (Martin et al. 2000; Trout et al. 1997). El presente trabajo tuvo como finalidad identificar hongos aislados de aguas y suelos contaminados con elevadas capacidades de degradación de tiocianato, con potenciales aplicaciones en procesos de biorremediación. Se evaluó la velocidad de degradación del SCN de 58 mohos y obtuvimos cuatro con excelentes capacidades de degradar ⁻SCN. Asimismo, se ha determinado su relación filogenética mediante el análisis del ITS del gen rDNA.

Material y métodos

Áreas de estudio: se colectó muestras de agua y suelo de zonas influenciadas con desechos mineros ubicadas en dos regiones del Perú. Una de éstas fue en los alrededores del Lago Chinchaycocha, ubicado al Nor-Oeste del Departamento de Junín en la sierra central a 4115 m de altitud. La otra zona fue el río Tumbes, ubicado al nor-oeste del departamento de Tumbes en la costa norte del país a 243 m de altitud.

Aislamiento de cepas nativas degradadoras de tiocianato: Las muestras de agua y suelo se sembraron en los medios líquidos de Kwon (Kwon et al. 2002) con 123 mM de ⁻SCN y M9 con 5 2 días a cada concentración, considerando como positivo aquel consorcio que presente crecimiento superior a la escala 0,5 de McFarland. En el caso del medio Kwon se cultivó por 5 días y se seleccionó las cepas con el mismo criterio. Luego que crecieron a concentraciones de 500 y 600 mM de ⁻SCN se sembraron en agar Kwon y M9 respectivamente. Las colonias seleccionadas fueron repicadas a Medio Saboraud para su mantenimiento. **Evaluación de la capacidad degradativa del ⁻SCN:** A las mejores cepas de mohos que crecieron en altas concentraciones de ⁻SCN (diámetro de la colonia >2 cm) se les sometió a los ensavos de cinética de degradación de ⁻SCN vs Tiempo. Este

mM de -SCN en agitación rotatoria de 200 rpm. Luego, todas

las muestras enriquecidas se sometieron al ensayo de mínima concentración inhibitoria de tiocianato de potasio (MIC) entre

100 a 600 mM, los consorcios se sembraron en medio M9 por

hicjones cepas de monos que electeron en artas concentraciones de "SCN (diámetro de la colonia >2 cm) se les sometió a los ensayos de cinética de degradación de "SCN vs Tiempo. Este ensayo se realizó en medio líquido Kwon con 1,2 mM de "SCN en agitación constante a 200 rpm y temperatura ambiente durante 90 horas. Se usó un inóculo inicial de 100 mg de peso húmedo de cada cepa. Se tomaron alícuotas de 2 mL del cultivo cada doce horas hasta las 90 horas, estas alícuotas fueron centrifugadas a 13000 x g por tres minutos y en el sobrenadante se cuantificó el "SCN residual. Asimismo, se determinó por cepa, el peso seco a 50 °C durante tres horas para construir una curva de crecimiento vs tiempo.

La cuantificación de la cantidad de ⁻SCN residual en los cultivos se realizó mediante análisis espectrofotométrico con el reactivo de nitrato férrico a DO₄₆₀ nm (Kelly & Wood 1998). Se preparó un volumen de reacción de 5,5 mL con 50 μ L de muestra, este ensayo se realizó con cuatro réplicas para cada tiempo por cepa comenzando de 1,2 g.L⁻¹ de ⁻SCN en el medio (Kwon et al. 2002).

Tipo de muestra	Cepa	Medio de aislamiento	Características morfológicas de la colonia
Agua	2TA-500-1M	M9	Moho rugoso, elevado, blanquecino, micelio aéreo largo. Irregular.
	3TA-500-1MK	Kwon	Moho liso, plano, translúcido, micelio aéreo corto, redondo.
	4TA-500-1	M9	Moho rugoso, elevado, translúcido con micelio, irregular.
	4TA-500-1M	M9	Moho pulverulento, elevado, blanquecino, micelio aéreo largo, irregular.
	5TA-500-1MK	Kwon	Moho rugoso, elevado, translúcido con micelio, redondo.
	6TA-500-1MK	Kwon	Moho pulverulento, elevado, blanquecino, micelio aéreo corto, redondo.
	7TA-500-1M	M9	Moho liso, plano, blanquecino, micelio aéreo corto irregular.
	8TA-500-1M	M9	Moho rugoso, elevado, blanquecino con micelio redondo.
	1TS-500-1	M9	Moho pulverulento, elevado, translúcido, micelio aéreo largo redondo.
	1TS-500-1M	M9	Moho liso, elevado, translúcido, micelio aéreo corto irregular.
	2TS-500-1M	M9	Moho rugoso, elevado, translúcido con micelio irregular.
	2TS-500-1MK	Kwon	Moho liso, plano, blanquecino con micelio irregular.
elo	2TS-500-2M	M9	Moho pulverulento, elevado, translúcido, ,micelio aéreo largo, redondo.
Su	3TS-500-1M	M9	Moho rugoso, elevado, translúcido, micelio aéreo corto, irregular.
	3TS-500-1MK	Kwon	Moho blanquecino, rugoso con micelio redondo.
	5TS-500-1M	M9	Moho pulverulento, elevado, blanquecino con micelio, redondo.
	8TS-500-1M	M9	Moho rugoso, elevado, translúcido, micelio aéreo largo redondo.
	8TS-500- 1MK	Kwon	Colonias con centros blanquecinos.
	2TSE-500-1M	M9	Colonias planas, borde regular, translúcidas, grandes.
	2TSE-500-4M	M9	Colonias filamentosas, rugosa, blanquecina elevada.
	2TSE-500- 5M	M9	Moho pulverulento, elevado, blanquecino con micelio irregular.
0	2TSE-500-1MK	Kwon	Moho rugoso, elevado, blanquecino, aéreo corto redondo.
cid	2TSE-500-3MK	Kwon	Moho liso, plano, blanquecino irregular.
ang	3TSE-500-5M	M9	Moho filamentoso, rugoso.
o enric	5TSE-500-1M	M9	Colonia blanquecina elevada.
	5TSE-500-1MK	Kwon	Moho pulverulento, elevado, translúcido, micelio aéreo corto redondo.
uel	8TSE-500-2M	M9	Moho rugoso, plano, blanquecino con micelio redondo.
S	8TSE-500-4M	M9	Moho pulverulento, elevado, micelio aéreo largo irregular.
	8TSE-500-1M	M9	Moho rugoso, plano, blanquecino, micelio aéreo corto irregular.
	8TSE-500-1MK	Kwon	Moho pulverulento, translúcido, micelio aéreo largo, redondo.
	8TSE-500-2MK	Kwon/500	Moho rugoso, elevado, translúcido, micelio aéreo corto, irregular.

Tabla 2. Características morfológicas de las colonias de los hongos filamentosos aislados en 500 mM de tiocianato de potasio del río Tumbes(Tumbes). La descripción fue realizada en agar M9 y agar Kwon según se indica.

Identificación de cepas: Los mohos aislados fueron identificados mediante ensayos microbiológicos estándares y aplicando el sistema Sacardo (Barnett & Hunter 1998) para hongos imperfectos. Posteriormente, en algunos casos, se usó métodos moleculares.

Para la identificación molecular se extrajo DNA cromosómico, las cepas se cultivaron en medio líquido Saboraud con 123 mM de ⁻SCN a 200 rpm de agitación rotatoria a 28 °C durante dos dias y se utilizó el Wizard genomic DNA Purification kit (Promega[°]) (Orbegozo et al. 2008) utilizando 200 U de la enzima Liticasa para la ruptura de la pared celular de los hongos.

El DNA genómico fue usado para amplificar por PCR la región ITS del gen 28S rDNA (Orbegozo et al. 2008; Sonnenberg et al. 2007). Los iniciadores usados fueron el ITS1 (5'-TCCGTAGGTGAACCTGCGG-3') y ITS4 (5'-TCCTC-CGCTTATTGATATGC-3') (White et al. 1990). El programa de PCR fue: desnaturalización a 95 °C durante 3 minutos (1 ciclo), seguido de 30 ciclos a 95 °C por 30 segundos, hibridación a 58 °C por 30 segundos, síntesis a 72 °C por 2 minutos y extensión final a 72 °C por 5 minutos. La mezcla de reacción fue: 0,5 μ L de cada iniciador, 0,5 μ L de dNTPs, 5 μ L de buffer 5X, 1 μ L de MgCl₂, 0,125 μ L de *Taq*, 14,875 μ L NFW y 2,5 μ L de DNA molde. Para visualizar el DNA cromosomal y los productos de PCR se utilizaron geles de agarosa 1% en TAE 0,5X. Las muestras se mezclaron con solución de carga (0,25% azul de bromofenol, 40% sacarosa). Como marcador de tama-

ño molecular se utilizó 1 kb plus DNA Ladder (Promega[°]). La tinción se realizó con bromuro de etidio, bandas se visualizaron en un transiluminador de luz UV y la secuenciación se realizó bajo las condiciones de BigDyeTM *terminator cycling* y la corrida utilizando Automatic Sequencer 3730xl en MACROGEN USA (http://www.macrogenusa.com).

Filogenia molecular: Se realizó comparando las secuencias de la región ITS del gen rDNA 28S de los hongos nativos con aquellas disponibles en las base de datos del NCBI Genbank/ EMBL/DDBJ y usando el programa de alineamiento local de secuencias BlastN versión 2.0 (Altschul et al. 1997), y Cap3 (Huang & Madan 1999) para obtener la secuencia consenso. Se alinearon las secuencias de nuestras cepas con las secuencias obtenidas del NCBI con el programa Clustal X (Larkin et al. 2007) y se trabajó el alineamiento con el BioEdit 7.0.9 (Hall 2009), y se convirtió a formato Mega en el programa MEGA 4.1 (Kumar et al. 2008). Se construyó la filogenia con el algoritmo *Neighboard Joining* con *boostrap* de 1000 replicas, considerando el modelo de sustitución nucleotídica de Kimura 2-p.

Resultados

Aislamiento de hongos degradadores de SCN: En total se procesaron 46 muestras de suelos y aguas que fueron enriquecidas en medio M9 y Kwon (Kwon et al. 2002) en presencia de 'SCN. En total se aislaron 58 cepas de mohos, de las cuales 26 fueron de Junín (Tabla 1; 5 de agua, 8 de suelo y 13 de suelo

Figura 1. Cinética de consumo de tiocianato por mohos. El SCNconsumido en g.L⁻¹ vs. tiempo en horas fue cuantificado en medio líquido Kwon con concentracion inicial de 1,2 g.L⁻¹ de KSCN durante 90 horas en agitación constante con medicion espectofotométrica de tiocianato residual. Se muestran las cepas de mohos 5JS-500-2MK (▲), 11JSE-500-1MK (♦), 3JSE-500-1MK (□) y 9JSE-500 1MK (●) aisladas de suelo la primera y suelo enriquecido las tres últimas de ambientes mineros de Junín.

enriquecido) y 32 de Tumbes (Tabla 2; 9 de agua, 9 de suelo y 14 de suelo enriquecido), sólo 12 cepas crecieron a 500 mM de ⁻SCN en placa, éstas cepas fueron de Junín (3 de suelo y 9 de suelo enriquecido). En las Tablas 1 y 2 se describen las características morfológicas de las colonias de las cepas de mohos en medio M9 o Kwon, aislados de Junin y Tumbes según la muestra procesada (agua, suelo o suelo enriquecido).

Evaluación de la capacidad degradativa del SCN: Se realizó el ensayo de MIC a 58 cepas de mohos. Del total de éstos, sólo 12 crecieron a 500 mM de SCN en placa: *Fusarium* sp.1JS-500-1M, *Fusarium* sp. 1JSE-500-1M, *Fusarium* sp. 1JSE-500-1M, *Fusarium* sp. 9JSE-500-1MK, *Fusarium* sp. 11JSE-500-1M, *Fusarium* sp. 9JSE-500-2MK, *Bispora* sp. 7JS-500-1MK, *Cladosporium* sp. 3JSE-500-3MK, *Monillia* sp. 11JSE-500-2MK, 9JSE-500-1M, 3JSE-500-1M, 3JSE-500-1MK (Tabla 3). La capacidad de degradativa de SCN a éstas se les evaluó y cuantificó mediante ensayo espectofotométrico. Las 12 cepas fueron aisladas de muestras procedentes de Junín (3 de suelo y 9 de suelo enriquecido).

Evaluación cuantitativa de la degradación del 'SCN. Se cuantificó la cantidad de 'SCN residual en los cultivos de 13 cepas que degradan altos niveles de 'SCN (500 mM) mediante ensayo espectrofotométrico, los resultados se muestran en la Tabla 4. Las cepas que presentaron los mayores valores de velocidades de degradación de 'SCN y un rendimiento mayor a 50% respecto al consumo de 'SCN fueron: *Paecilomyces* sp. 5JS-500-2MK, *Fusarium* sp. 14JSE-500-1M, y *Fusarium* sp. 9JSE-500-1MK.

Asimismo, se realizó la cinética de crecimiento de las 13 mejores cepas obteniendo los resultados que se presentan en la Tabla 5. Se consideró como las mejores cepas aquellas que mostraron una producción de biomasa como peso seco mayor a 0,090 g.L⁻¹.h⁻¹,en presencia de ⁻SCN. Entre éstas tuvimos a *Fusarium* sp. 14JSE-500-1M, *Fusarium* sp. 1JS-500-1M, *Fusarium* sp. 9JSE-500-1MK, *Paecilomyces* sp. 5JS-500-2MK, 1TS-500-2K y 3JSE-500-1MK.

Figura 2. Cinética de crecimiento de mohos que degradan tiocianato. El peso seco en g.L⁻¹ vs. tiempo en horas fue determinado en medio líquido Kwon a concentracion inicial de 1,2 g.L⁻¹ de KSCN durante 90 horas con intervalos de 12 horas. Se muestran las cepas de mohos 5JS-500-2MK (▲), 11JSE-500-1MK (♦), 3JSE-500-1MK (■) y 9JSE-500 1MK (□) aisladas de suelo la primera y suelo enriquecido las tres últimas de ambientes mineros de Junín.

Solamente las cepas que mostraron los mejores rendimientos fueron evaluadas en consumo y crecimiento en ⁻SCN vs tiempo (Fig. 1 y 2). Entre éstas tuvimos a *Paecilomyces* sp. 5JS-500-2MK y los *Fusarium* sp. 11JSE-500-1MK, 9JSE-500 1MK y 3JSE-500-1MK. La cepa de *Paecilomyces* sp. fue aislada de suelo y los *Fusarium* sp. de suelo enriquecido de ambientes mineros de Junín.

Identificación de cepas nativas degradadoras de SCN: Se identificaron 9 mohos de acuerdo a sus estructuras reproductivas y vegetativas con la clave Saccardo (Barnett 1998), de las cuales cinco cepas resultaron *Fusarium* sp., una *Paecilomyces* sp., dos *Cladosporium* sp. y *Bispora* sp. También se identificaron 5 mohos a partir de las estructuras en microcultivo: cuatro *Aspergillus* sp. y un *Trichophyton* sp.

En la Figura 3A se muestra la colonia de Bispora sp. 7JS-500-1MK, elevada, blanca verdosa con bordes irregulares y micelio aéreo algodonoso. Al microcultivo se observan hifas hialinas tabicadas (Fig. 3B) y macroconidias que se tabican en microconidias con dos blastosporas en su interior (Fig. 3C). En tanto que, Monillia sp. 11JSE-500-2MK presentó colonia blanca algodonosa con centro beige, bordes rregulares y micelio aéreo algodonoso (Fig. 3D). Al microcultivo se observan en hifas hialinas tabicadas con vacuolas en su interior del cual se desprenden y microconidias unicelulares redondas unidas (Fig. 3E). Entre tanto, Paecilomyces sp. 5JS-500-2MK, (Fig. 3F) presentó colonias algodonosas, blanquecina, elevada, esponjosa, con centro beige y micelio aéreo blanquecino, que al microcultivo se observa fiálides multiverticiliadas con filosporas unicelulares en cadenas largas en hifas hialinas aseptadas (Fig. 3G). Por otro lado, *Cladosporium* sp. 3JSE-500-3MK con colonia blanca elevada, esponjosa, tupida, y micelio aéreo blanquecino delgado esponjoso con fondo anaranjado claro (Fig. 3H) con hifas hialinas tabicadas y presencia de esporas sueltas como blastosporas (Fig. 3I).

Asimismo, se identificó a la cepa 11JSE-500-1MK como *Fusarium* sp. (Fig. 4A), ésta presentó una colonia morada con bordes blancos y micelio aéreo esponjoso blanquecino al borde,

Figura 3. Mohos cultivados en agar Sabouraud. A, Bispora sp. 7JS-500-1MK, con colonia elevada, blanca verdosa con bordes rregulares y micelio aéreo algodonoso. En B, hifas hialinas tabicadas y en C, macroconidias que se tabican en microconidias con dos blastosporas. En D, Monillia sp. 11JSE-500-2MK., presenta colonia blanca algodonosas con centro beige, bordes rregulares y micelio aéreo algodonoso. Al microcultivo se observan en E, hifas hialinas tabicadas con vacuolas en su interior del cual se desprenden y microconidias unicelulares redondas unidas. En F, Paecilomyces sp. 5JS-500-2MK, con colonia algodonosa, blanquecina, elevada, esponjosa, con centro beige y micelio aéreo blanquecino. En G al microcultivo se observan fiálides multiverticiliadas con filosporas unicelulares en cadenas largas en hifas hialinas aseptadas. En H, Cladosporium sp. 3JSE-500-3MK con colonia blanca elevada, esponjosa, tupida, y micelio aéreo blanquecino delgado esponjoso con fondo anaranjado claro. En I, al microcultivo se observan hifas hialinas tabicadas y presencia de esporas sueltas como blastosporas. 1000 aumentos.

con pigmentación morada concéntrica, que microscópicamente se observan hifas delgadas hialinas aseptadas, conidióforos largos con microconidias ovales. La flecha indica microconidias pequeñas de bordes romos (Fig. 4B). Además, se identificó un *Fusarium* sp. 1JS-500-1M con colonia elevada, irregular con micelio aéreo blanco-naranja ralo y largo (Fig. 4C), que al microcultivo mostró macroconidias grandes hialinas tabicadas e hifas septadas con presencia de clamidosporas (Fig. 4D). Además, identificamos a *Fusarium* sp. 14JSE-500-1M con colonia

Figura 4. Mohos cultivados en agar Sabouraud. A, Fusarium sp. 11JSE-500-1MK, colonia morada con bordes blancos y micelio aéreo esponjoso blanquecino al borde, con pigmentación morada concéntrica y B, microscópicamente se observan hifas delgadas hialinas aseptadas, conidióforos largos con microconidias ovales. En C, Fusarium sp. 1JS-500-1M con colonia elevada, irregular con micelio aéreo blanco-naranja ralo y largo. Al microcultivo se observan en D macroconidias grandes hialinas tabicadas e hifas septadas con presencia de clamidosporas. En E, Fusarium sp. 14JSE-500-1M, colonia blanquecina, elevada esponjosa, con centro morado purpura con bordes irregulares y micelio aéreo esponjoso. Al microcultivo se observan en F, hifas tabicadas hialinas con presencia de macroconidias alargadas tabicadas grandes y gruesas, con presencia de clamidosporas. En G, Fusarium sp. 9JSE-500-1MK, colonia blanca con bordes regulares, elevada, esponjosa y micelio aéreo largo liso, al microcultivo en H, se observan hifas tabicadas con presencia de macroconidias y microconidios pequeños.

blanquecina, elevada esponjosa, con centro morado purpura con bordes irregulares y micelio aéreo esponjoso (Fig. 4E). Al microcultivo se observan hifas tabicadas hialinas con presencia de macroconidias alargadas tabicadas grandes y gruesas con presencia de clamidosporas (Fig. 4F). También a *Fusarium* sp. 9JSE-500-1MK con colonia blanca de bordes regulares, elevada, esponjosa y micelio aéreo largo liso (Fig. 5G), al microcultivo se observan hifas tabicadas con presencia de macroconidias y microconidios pequeños (Fig. 4H).

Figura 5. Árbol filogenético construido por el método de Neighbor Joining utilizando la región ITS de rDNA de los aislados de *Fusarium tricinctum* 1JS-500-1M y 3JSE-500-1MK que degradan altos niveles de tiocianato. Se utilizó el modelo Kimura 2-p y un análisis de bootstrap de 1000 repeticiones.

Filogenia molecular: La región ITS de las cepas 1JS-500-1M y 3JSE-500-1MK fueron sometidas al alineamiento mediante el programa BlastN. Asimismo, se obtuvo el porcentaje de identidad de cada una de ellas con las secuencias existentes en la base de datos. Las cepas 1JS-500-1M y 3JSE-500-1MK presentaron un 100% de identidad con *F. trincictum*. Se seleccionaron secuencias de la base de datos del NCBI relacionadas a las nuestras y se construyó el árbol filogenético con el marcador ITS de los mohos filamentosos 1JS-500-1M y 3JSE-500-1MK y se ubicaron en el clado robusto de *F. trincictum* (Fig. 5).

Discusión

Aislamiento de cepas nativas degradadoras de 'SCN: Las cepas de mohos aislados de Junín fueron mejores degradadoras de -SCN que las de Tumbes. En comparación con lo propuesto por Baxter y Cumming (2006), Yamasaki et al. (2002) y Patil (2008), el enriquecimiento con 'SCN incrementó la actividad degradativa de las cepas, lo que corrobora los buenos resultados al aislar las cepas en medios mínimos enriquecidos con 'SCN especialmente al usar el medio M9 a pH neutro utilizado por Patil (2008) para el aislamiento de comunidades bacterianas. En nuestro caso el enriquecimiento fue exitoso ya que el número de mohos aislados a partir de este medio fue similar al obtenido en medio Kwon.

Evaluación de la capacidad degradativa del 'SCN: al evaluar la velocidad de degradación de 'SCN, la velocidad de crecimiento, el total de 'SCN degradado por hora, la cantidad de biomasa producida y la tendencia de su curva de crecimiento, consideramos que las mejores cepas fueron: *Paecilomyces* sp. 5JS-500-2MK, *Fusarium* sp. 9JSE-500-1Mk y *F. trincictum* 3JSE-500-1MK. Estas presentaron velocidades de degradación superiores a 20 mg.L⁻¹.h⁻¹ y un rendimiento superior al 50% respecto al consumo de "SCN (Figs. 1 y 2). En este sentido, éstas cepas podrían ser usadas en procesos de biorremediación *ex situ.* Por otro lado, el *Fusarium* sp. 11JSE-500-1MK degrada alrededor del 50% de 'SCN con baja producción de biomasa, por lo que podría ser un buen candidato para aplicarla en procesos *in situ.* ya que en éstos hay que controlar la producción de biomasa.

Asimismo, las cepas de *F. trincictum* 11JSE-500-1MK y 1JS-500-1M crecieron en medio sólido Kwon con 500 mM de ⁻SCN, esta concentración de ⁻SCN es mayor a las anteriormente reportadas por Souza-Fagundes et al. (2004) de 5 mM y por Kwon et al. (2002) de 123 mM. Nuestros aislados tuvieron capacidad para degradar ⁻SCN muy superior a *Thiobacillus thioparus*, ésta degrada solo 5 mM de KSCN en 40 horas (Yamasaki et al. 2002), en comparación a 50 g.L⁻¹ en placa en 72 horas y en promedio degradan 10,05 mg.L⁻¹.h⁻¹ con una velocidad promedio 28,77 mg.L⁻¹.h⁻¹ en 60 horas partiendo de una concentración inicial de 1,2 g.L⁻¹, en comparación con las bacterias *Pseudomonas* sp. y *Bacillus* sp. que degradan 0,65 g.L⁻¹ en placa en 48 horas a partir de una concentración de 5 mM ⁻SCN (Boucabeille et al. 1994), y con *Acremonium strictum* (Kwon et al. 2002) que degrada 7,4 g ⁻SCN en 85 horas.

Identificación de cepas nativas degradadoras de tiocianato: En reportes previos, *A. strictum* (Kwon et al. 2002) tolera altas

concentraciones de SCN, similares resultados obtuvimos con nuestros aislados de *Fusarium* sp. 11JSE-500-1M, 11JSE-500-1MK, 1JS-500-1M, 14JSE-500-1M, 9JSE-500-1MK, *Paecilomyces* sp. 5JS-500-2MK, *Cladosporium* sp. 3JSE-500-3MK. y *Bispora* sp. 7JS-500-1MK. Algunas de éstas cepas fueron identificadas molecularmente con el marcador ITS como *F trincitum*: 1JS-500-1M y 3JSE-500-1MK. Estas presentaron porcentaje de identidad y cobertura de 100% con un *E-value* de 0,0, confirmando la identificación genérica obtenida por las bases de datos MycoBand (MICOBAND 2008) y DrFungus (DrFungus 2008), entre otras existentes en el NCBI y la reportada por Arias y Piñeros (2008).

Existen pocos casos de reportes de identificación molecular de las especies de *Fusarium* de ambientes contaminados con cianuro o sus derivados, un *Fusarium* fue identificado molecularmente en muestras de paramo (Arias & Piñeros 2008). Resulta interesante mencionar que los dos aislados nuestros se encuentran en el clado correspondiente a *Fusarium trincictum* que indica que la ITS nos permite separar esta especie de otras, sin embargo observamos incluidas otras especies como *F. oxysporium*, por lo que sería necesario usar otro marcador más polimórfico, como el fragmento del gen del factor de elongación de la traducción (TEF-1 α) reportado por Nietschke et al. (2009).

En conclusión se aislaron 58 mohos degradadores de ⁵CN de muestras de suelos y aguas de los cuales *Fusarium* sp. 14JSE-500-1M, *Fusarium* sp. 9JSE-500-1Mk y *Paecilomyces* sp. 5JS-500-2MK presentaron elevadas capacidades degradativas de ⁵SCN. Se identificaron molecularmente con el marcador ITS a *Fusarium trincictum* 3JSE-500-1MK y 1JS-500-1M. En general la capacidad degradativa del ⁵SCN de los hongos aislados de aguas y suelos contaminados de Junín y Tumbes fueron de 50 g.L⁻¹ y en promedio 10,05 mg.L⁻¹.h⁻¹ con una velocidad promedio 28,77 mg.L⁻¹.h⁻¹ en 60 h partiendo de una concentración inicial de 1,2 g.L⁻¹, estas cepas consumieron hasta un 52,3% del ⁵SCN inicial.

Agradecimientos

Al Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (CONCYTEC) por el financiamiento al proyecto mediante contrato Nº 223-2008-CONCYTEC-OAJ. Esta publicación fue parte de la tesis de título profesional de Bióloga Microbióloga-Parasitóloga de Susan Medina.

Literatura citada

- Altschul S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D.L. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25:3389-3402.
- Arias E. & P. Piñeros. 2008. Aislamiento e identificación de hongos filamentosos de muestras de suelo de los Paramos de Huasca y Cruz Verde. Tesis para optar el Grado-Pontificia Universidad Javeriana-Facultad de Ciencias. Bogotá-Colombia. 45-57.
- Barclay M., A. Hart, C.J. Knowles, J.C.L. Meeussen & V.A. Tett. 1998. Biodegradation of metal cyanides by mixed and pure cultures of fungi. Enz. Microb. Technol. 22: 223-231.
- Barnett H. L. & B. B. Hunter. 1998. Illustrated Genera of Imperfect fungi. The american Phytopathological Society 2nd. Ed.
- Baxter J. & S.P. Cummings. 2006. The Current and Future Applications of Microorganism in the Bioremediation of Cyanide Contamination. Antonie van Leeuwenhoek, 90: 1-17.
- Boucabeille C., A. Bories & P. Ollivier. 1994. Degradation of thiocyanate by a bacterial coculture. Biotechnology Letters 16:425-430.
- Bordo D. & P. Bork. 2002. The rhodanese/Cdc25 phosphatase superfamily Sequence–structure–function relations. EMBO reports 3(8):741–746
- Cluness M. J., P. D. Turner, E. Clements, D. T. Brown & C. Reilly. 1993. Purification and properties of cyanide hydratase from Fusarium lateritium and analysis od the correspondyng Chy1 gene. J. Gen. Microbiol. 139: 1807-1815
- Dorr P. K. & C. J. Knowles. 1989. Cyanide oxygenase and cyanase activities of Pseudomonas fluorecens NCIMB 11746. FEMS Microbiol. Lett. 50: 289-294.
- DrFungus. 2008. Mycological database Image bank. http://www. doctorfungus.org/imageban/.2008.
- Dubey S.K. & D.S. Holmes. 1995. Biological cyanide destruction mediated by microorganisms. World J. Microb. Biot. 11:257-265.
- Dumestre A., T. Chone, J.M. Portal, M. Gerard & J. Berthelin. 1997. Cyanide degradation under alkaline conditions by a strain of Fusarium solani isolated from contaminated soils. Appl. Environ. Microbiol. 63: 2729-2734.
- Ezzi M. & J.M. Lynch. 2002. Cyanide catabolizing enzymes in trichoderma spp. Enz. Microb. Technol. 31:1042-1047.
- Faull J. L., K. A. Graeme-Cook & B. L. Pilkington. 1994. Production of an isonitrile antibiotic by an UV-induced mutant of Trichoderma harziamu. Phytochemistry 36: 1273-1276.
- Hall T. 2009. BioEdit 7.0.9 Ibis BioSciences, Carlsbad.
- Huang X. & A. Madan. 1999. CAP3: A DNA sequence assembly program. Genome Res., 9: 868-877
- Katayama Y., Y. Narahara, Y.Inoue, F. Amano, T. Kanagawa & H. Kuraishi. 1992. A thiocyanate hydrolase of Thiobacillus thioparus. A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate. J. Biol. Chem. 267:9170-5.
- Kelly D.P. & A.P. Wood. 1998. Microbes of the sulfur cycle. En R.S. Burlage, R. Atlas, D. Stahl, G. Geesey y G. Sayler (eds), Techniques in microbial ecology p:31-57. Oxford University Press. USA.v
- Kumar S., J. Dudle, M. Nei & K. Tamura. 2008. MEGA: A biologistcentric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics 9: 299-306.
- Kwon H. K., S. H. Woo & J. M. Park. 2002. Thiocyanate degradation by Acremonium strictum and inhibition by secondary toxicants. Biotechnology Letters 24:1347-1351.
- Larkin M.A., G. Blackshields, N.P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D.Thompson, T.J.Gibson & D.G.Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947-2948.

- Martin R.R., Delano J.Y. & C.A. Levesque. 2000. Impacts of molecular diagnostic technologies on plant disease management. Annu. Rev. Phytopathol. 38:207-239
- MICOBAND. 2008. Fungal Databases Nomenclature and Special Taxonomic Novelties Submission. Administered by internationl association. http://www.mycobank.org
- Nietschke E., M. Nihlgard & M. Varrelmam. 2009. Differentiation of eleven Fusarium spp. Isolated from sugar beet using restriction fragment analysis of a polymerase chain reaction-amplified translation elongation factor 1α gene fragment. Phytopathotogy 99:921-929
- Orbegozo J., M. Abanto, R. Garcia & P. Ramirez. 2008. Identificacion molecular de Pichia guillermondi aislada de aguas ácidas de minas del Perú y su resistencia a metales pesados. Rev. Peru. Biol. 15(1): 91-96
- Patil Y. 2008 Degradation of thiocyanate from aqueous waste by a mixed Bacterial community. Res. J. chem. Environ. 12(1):69-75
- Ramirez P., H. Toledo, N. Guilliani & C.Jerez. 2002. An exported rodhanase-like protein is induced during growth of Thiobacillus ferroxidans in metal sulfides and different sulfur compounds. Appl. Environ. Microbiol.68: 1837-1845

- Sonnenberg R., A.W. Nolte & D. Tautz. 2007. An evaluation of LSU rDNA D1-D2 sequences for their use species identification. Front. Zool. 4:6.
- Souza-Fagundes E., L. Rosa, N. Gomes, M. Santos, & P. Pimentel. 2004. Thiocyanate degradation by pure and mixed cultures of microorganisms. Brazilian Journal of Microbiology 35:333-336.
- Sorokin D.Y., T.P. Tourova, A.M. Lysenko & J.G. Kuenen. 2001. Microbial thiocyanate utilization under highly alkaline conditions. Appl Environ Microbiol 67:528-538.
- Yamasaki M., Y. Matsushita, M. Namura, H. Nyunoya & Y. Katayama. 2002. Genetic and immunochemical characterization of thiocyanate-degrading bacteria in lake water. Appl. Environ. Microbiol. 68:942-6.
- White, T. J., T. Bruns, S. Lee & J.W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp. 315-322 In: PCR Protocols: A Guide to Methods and Applications, eds. Innis, M. A., D. H. Gelfand, J. J. Sninsky, and T. J. White. Academic Press, Inc., New York.