Aislamientos de bacterias post tratamiento con gasoil - agua y centrifugación de fondo de tanques petroleros

Autores/as

  • Marilina Gonzáles Centro de Estudio e Investigación en Microbiología Aplicada, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Argentina.
  • Graciela Pucci Centro de Estudio e Investigación en Microbiología Aplicada, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Argentina. https://orcid.org/0000-0002-0238-2394

DOI:

https://doi.org/10.15381/rpb.v29i2.21526

Palabras clave:

Fondo de tanques de petróleo, Lodo del fondo de tanque de petróleo, Contaminación, Tratamiento de desechos, Consorcios microbianos, Hidrocarburos, Tanque de almacenamiento

Resumen

En la industria petrolera se almacenan grandes cantidades de hidrocarburos en tanques en las diferentes etapas de extracción y procesamiento del crudo hasta su refinamiento. Esto genera un residuo denominado fondo de tanque, es una emulsión estable de sedimentos agua e hidrocarburos. Este trabajo tuvo como objeto estudiar las bacterias que están presentes en el sedimento después de la primera etapa de tratamiento con gasoil, agua, temperatura y posterior centrifugación. El sedimento, considerado por la legislación como residuo peligroso se le realizo un estudio bacteriológico, que consistió en recuento, aislamiento e identifican de bacterias. Se obtuvieron 34 cepas de las cuales 86.1% pertenecieron al género Bacillus. Las mismas presentaron capacidad para desarrollar en alguno de los siguientes hidrocarburos o mezclas de hidrocarburos gasoil, kerosene, hexadecano y ciclohexano.

Descargas

Los datos de descarga aún no están disponibles.

Biografía del autor/a

  • Graciela Pucci, Centro de Estudio e Investigación en Microbiología Aplicada, Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Argentina.

    Profesora de Tratamientos de Residuos de la Explotación petrolera, jefe de trabajaos prácticos de microbiología general y jefe de trabajos practicos de microbiología ambiental. Trabajo en la univesidad durante el 2013 fui jefe de departamento de bioquímica y durante 4 años consejera del consejo superior de la unversidad. Trabajo en el centro de investigacion en microbiología aplicada (CEIMA) en la parte de ácidos grasos de membrana y determinaciones de hidrocarburos por GC  e IR. Area de Trabajo degradación de hidrocarburospor bacterias ambientales

Referencias

Aguelmous A, El Fels L, Souabi S, Zamama M, Hafidi M. 2019. The fate of total petroleum hydrocarbons during oily sludge composting: a critical review Reviews in Environmental Science and Bio/Technology. 18:473–493. https://doi.org/10.1007/s11157-019-09509-w

Annweiller E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Francke W, Michaelis W. 2000. Naphthalene degradation and incorporation of naphthalene derived carbon into biomass by the thermophile bacillus therleovorans. Applied Environmental Microbiology. 66:518-523. https://doi:org10.1128/aem.66.2.518-523.2000.

Ayotamuno MJ, Okparanma RN, Nweneka, EK, Ogaji SOT, Probert, SD. 2007. Bio-remediation of a sludge containing hydrocarbons. Applied Energy. 84(9):936-943. https://doi.org/10.1016/j.apenergy.2007.02.007

Bahuguna A, Lily MK, Munjal A, Singh R.N, Dangwal K. 2011. Desulfurization of dibenzothiophene (DBT) by a novel strain Lysinibacillus sphaericus DMT-7 isolated from diesel contaminated soil. Journal of Environmental Sciences. 23(6):975-982. https://doi.org/10.1016/S1001-0742(10)60504-9

Cambiella A, Ortea E, Rios G, Benito JM, Pazos C, Coca J. 2006. Treatment of oil-in-water emulsions: Performance of a sawdust bed filter. Journal of Hazardous Materials. 131(3):195-199. https://doi.org/10.1016/j.jhazmat.2005.09.023

Del Carpio E, Rodríguez S, Rondón M, Borges B. 2014. Stability of water–Boscan crude oil emulsions: Effect of salts, alcohols and glycols. Journal of Petroleum Science and Engineering. 122:542-550. https://doi.org/10.1016/j.petrol.2014.08.022

El-Batanoney M, Abdel-Moghny T, Ramzi M. 1999. The effect of mixed surfactants on enhancing oil recovery. Journal of Surfactants and Detergents. 2(2):201-205. https://doi.org/10.1007/s11743-999-0074-7

Felix AKN, Martins J J, Almeida JG, Giro MEA, Cavalcante KF, Melo VMM, de Santiago Aguiar RS. 2019. Purification and characterization of a biosurfactant produced by Bacillus subtilis in cashew apple juice and its application in the remediation of oil-contaminated soil. Colloids and Surfaces B: Biointerfaces. 175(1):256-263. https://doi.org/10.1016/j.colsurfb.2018.11.062

Figueroa V. 2009. Desemulsificación de tanques de slop por tratamiento en frío en refinería La Pampilla. Tesis para título de Ingeniero Petroquímico. Lima-Perú: Universidad Nacional de Ingeniería, Facultad de Ingeniería de petróleo, gas natural y petroquímica. http://cybertesis.uni.edu.pe/handle/uni/990

Gallego JL, García Martínez MJ, Llamas JF. 2007. Biodegradation of oil tank bottom sludge using microbial consortia. Biodegradation. 18(3):269-281. https://doi.org/10.1007/s10532-006-9061-y

Ghazali FM, Rahman RNZA, Salleh AB, Basri M. 2004. Degradation of hydrocarbons in soil by microbial consortium. International Biodeterioration and Biodegradation. 54(1):61-67. https://doi.org/10.1016/j.ibiod.2004.02.002

Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9pp.

Hernández-Santana A, Dussán J. 2018. Lysinibacillus sphaericus proved to have potential for the remediation of petroleum hydrocarbons. Soil and Sediment Contamination. 27(6): 538-549. https://doi.org/10.1080/15320383.2018.1490888

Heryani H, Putra MD. 2017. Kinetic study and modeling of biosurfactant production using Bacillus sp. Electronic Journal of Biotechnology. 27(1):49-54. https://doi.org/10.1016/j.ejbt.2017.03.005

Ijah U, Antai S. 2003. Removal of Nigerian light crude oil in soil over a 12-month period. International Biodeterioration and Biodegradation. 51(2):93-99. https://doi.org/10.1016/S0964-8305(01)00131-7

Jaekel U, Zedelius J, Wilkes H, Musat. 2015. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments. Frontiers in microbiology. 6:116-120. https://doi.org/10.3389/fmicb.2015.00116

Kralova I, Sjöblom J, Øye G, Simon S, Grimes BA, Paso K. 2011. Heavy Crude Oils/Particle Stabilized Emulsions. Advances in Colloid and Interface Science. 169(2):106-127. https://doi.org/10.1016/j.cis.2011.09.001

Logan NA, Halket G. 2011. Developments in the Taxonomy of Aerobic, Endospore-forming Bacteria. In: Logan NA, Vos P, editors. Endospore-forming Soil Bacteria. Berlin, Heidelberg: Springer; p. 1–29..

Method EPA 1664. 2010. Revision B: n-Hexane Extractable Material (HEM; Oil and Grease) and Silica Gel Treated n-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry. U.S. Environmental Protection Agency Office of Water. Disponible en: http://www.caslab.com/EPA-Method-1664/

Morais EB, Tauk-Tornisielo SM. 2009. Biodegradation of oil refinery residues using mixed-culture of microorganisms isolated from a landfarming. Brazilian Archives of Biology and Technology. 52(6):1571-1578. https://doi.org/10.1590/S1516-89132009000600029

Peña-Montenegro T, Dussan-G J. 2013. Genome sequence and description of the heavy metal tolerant bacterium Lysinibacillus sphaericus strain OT4b.31. Standards in Genomic Sciences. 9(1):42-56. https://doi.org/10.4056/sigs.4227894

Peña-Montenegro T, Lozano L, Dussan-G J. 2015. Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Standards in Genomic Sciences. 10(1):2. https://doi.org/10.1186/1944-3277-10-2

Penet SR, Marchal AC, Bertonicini F, Monot F. 2006. Characterisation of biodegration capacities of environmental microflorae for diesel oil by comprehensive two dimensional gas chromatography. Biodegradation. 17(6):577-585. https://doi.org/10.1007/s10532-005-9028-4

Pucci GN, Pucci OH. 2003. Biodegradabilidad de componentes de mezclas naturales de hidrocarburo previamente sometidas a Landfarming. Revista Argentina de Microbiología. ISSN: 0325-7541. 35(1):62-68

Reasoner DJ y Geldreich EE. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 49(1):1-7. PMID: 3883894. PMCID: PMC238333

Ron EZ, Rosenberg E. 2002. Biosurfactants and oil bioremediation. Current Opinion on Biotechnology. 13(3):249–252. https://doi.org/10.1016/S0958-1669(02)00316-6

Rosen MJ, Kunjappu JT. 2012. Surfactants and Interfacial Phenomena. Hoboken, NJ, USA: Wiley: A John Wiley and Sons, Inc., Publication.

Sakai S, Yoshida H, Hirai Y, Asari M, Takigami H, Takahashi S, Tomoda K, Peeler MV, Wejchert J, Schmid-Unterseh T, Douvan AR, Hathaway R, Hylander LD, Fischer C. Oh G. J, Jinhui L, Chi N.K. 2011. International comparative study of 3R and waste management policy developments. Journal of Material Cycles and Waste Management. 13(2):86-102. https://doi.org/10.1007/s10163-011-0009-x

Shie J, Chang CY, Lin JP, Wu, CH, Lee DJ. 2000. Resources recovery of oil sludge by pyrolysis: kinetics study. Journal of Chemical Technology. Biotechnology. 75(6):443-450. https://doi.org/10.1002/1097-4660(200006)75:6<443::AID-JCTB228>3.0.CO;2-B

Silva RC, Carneiro GF, Barbosa LL, Lacerda V, Freitas JCC, de Castro EVR. 2012. Studies on crude oil-water biphasic mixtures by low-field NMR. Magnetic Resonance in Chemistry. 50(2):85-88. https://doi.org/10.1002/mrc.2798

Tissot BP, Welte DH. 1984. Petroleum Formation and Occurrence. Berlin: Springer-Verlag.

Velásquez L, Dussan-G J. 2009. Biosorption and Bioaccumulation of Heavy Metals on Dead and Living Biomass of Bacillus spharicus. Journal of hazardous materials. 167(1-3):713-6. https://doi.org/10.1016/j.jhazmat.2009.01.044

Xia XH, Yu H, Yang ZF, Huang GH. 2006. Biodegradation of polycyclic aromatic hydrocarbons in the natural waters of the Yellow River: Effects of high sediment content on biodegradation. Chemosphere. 65(3):457-466. https://doi.org/10.1016/j.chemosphere.2006.01.075

Yang X, Tan W, Bu Y. 2009. Demulsification of Asphaltenes and Resins Stabilized Emulsions via the Freeze/Thaw Method. Energy and Fuels. 23(1):481-486. https://doi.org/10.1021/ef800600v

Zambrano Vidal ML. 2002. Tratamiento biológico de los lodos depositados en los tanques de almacenamiento de combustibles en el terminal El Beaterio. Proyecto de titulación previo a la obtención del título de Ingeniero Químico. Quito-Ecuador: Escuela Politécnica Nacional. 139p.

Zerna-Guzman M, Acuña AJ, Pucci GN. 2019. Lavado con solventes de fondos de tanques petroleros. Asociación Ingeniería Sanitaria y Ambiental Argentina 135(2):28-31

Zhang J, Xue Q, Gao H, Lai H, Wang P. 2016. Bacterial degradation of crude oil using solid formulations of Bacillus strains isolated from oil-contaminated soil towards microbial enhanced oil recovery application. RSC advances. 6(7):5566-5574. https://doi.org/10.1039/C5RA23772F

Zubaidy EA, Abouelnasr DM. 2010. Fuel recovery from waste oily sludge using solvent extraction. Process Safety and Environmental Protection. 88(5):318-326. https://doi.org/10.1016/j.psep.2010.04.001

Descargas

Publicado

31.05.2022

Número

Sección

Trabajos originales

Cómo citar

Gonzáles, Marilina, and Graciela Pucci. 2022. “Aislamientos De Bacterias Post Tratamiento Con Gasoil - Agua Y centrifugación De Fondo De Tanques Petroleros”. Revista Peruana De Biología 29 (2): e21526. https://doi.org/10.15381/rpb.v29i2.21526.