Ausencia de síntesis de trehalosa en Acidithiobacillus ferrooxidans ATCC 23270 y Acidithiobacillus ferrivorans CF27 a baja temperatura

Autores/as

  • Maria Castañeda-Fernandez Universidad Nacional Mayor de San Marcos, Faculty of Biological Sciences, Laboratory of Molecular Microbiology and Biotechnology, Lima, Peru. https://orcid.org/0000-0003-0163-7460
  • Marcos Sulca Universidad Nacional Mayor de San Marcos, Faculty of Biological Sciences, Laboratory of Molecular Microbiology and Biotechnology, Lima, Peru. https://orcid.org/0000-0001-9056-0068
  • Pablo Ramirez Universidad Nacional Mayor de San Marcos, Faculty of Biological Sciences, Laboratory of Molecular Microbiology and Biotechnology, Lima, Peru. https://orcid.org/0000-0001-9309-7021

DOI:

https://doi.org/10.15381/rpb.v30i1.23034

Palabras clave:

Acidithiobacillus, ensayo enzimático, biosíntesis, trehalosa

Resumen

La trehalosa es un tipo de carbohidrato, que en procariotas protege contra diferentes tipos de estrés y también se utiliza como fuente de almacenamiento de carbono. Hay cuatro formas diferentes de sintetizar trehalosa en Acidithiobacillus ferrivorans y dos en Acidithiobacillus ferrooxidans, pero su propósito sigue siendo desconocido. Este estudio tuvo como objetivo medir la producción de trehalosa en diferentes condiciones mediante su cuantificación en tres medios de cultivo a dos temperaturas diferentes. También se evaluó la cinética de crecimiento de ambas especies y se analizó la concentración de trehalosa durante la fase estacionaria temprana mediante un método enzimático. Los resultados mostraron que el medio 9K modificado con hierro ferroso a 28 °C tuvo la mayor producción de trehalosa, con A. ferrivorans CF27 con una mayor producción de 0.34 µmol/mg de proteína en comparación con A. ferrooxidans ATCC 23270 a 0.31 µmol/mg de proteína. Al utilizar CuS, la producción de trehalosa fue menor, con 0.02 y 0.03 µmol/mg de proteína para A. ferrivorans CF27 y A. ferrooxidans ATCC 23270, respectivamente, mientras que en presencia de zinc no se detectó trehalosa. A 15°C, el método enzimático no detectó trehalosa en los tres medios de cultivo, lo que indicaria que este carbohidrato no protege contra las bajas temperaturas en ninguna de las especies.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Amaro AM, Chamorro D, Seeger M, Arredondo R, Peirano I, Jerez CA. 1991. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J Bacteriol. 173(2):910–915.

Arredondo R, García A, Jerez CA. 1994. Partial Removal of Lipopolysaccharide from Thiobacillus ferrooxidans Affects Its Adhesion to Solids. Applied and Environmental Microbiology. 60(8):2846–2851. https://doi.org/10.1128/aem.60.8.2846-2851.1994

Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G. 2006. Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology. 6(1):109. https://doi.org/10.1186/1471-2148-6-109

Bao H. 2019. Analysis on Key Problems of Winter Operation in Alpine-cold Open-pit Mine. IOP Conf Ser: Earth Environ Sci. 384(1):012073. https://doi.org/10.1088/1755-1315/384/1/012073

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1):248–254. https://doi.org/10.1016/0003-2697(76)90527-3

Ccorahua-Santo R, Eca A, Abanto M, Guerra G, Ramírez P. 2017. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature. Res Microbiol. 168(5):482–492. https://doi.org/10.1016/J.RESMIC.2017.01.007

Chiu P-L, Kelly DF, Walz T. 2011. The use of trehalose in the preparation of specimens for molecular electron microscopy. Micron. 42(8):762–772. https://doi.org/10.1016/j.micron.2011.06.005

Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F. 2001. The Trehalose Myth Revisited: Introduction to a Symposium on Stabilization of Cells in the Dry State. Cryobiology. 43(2):89–105. https://doi.org/10.1006/cryo.2001.2353

Elbein AD, Pan YT, Pastuszak I, Carroll D. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology. 13(4):17R-27R. https://doi.org/10.1093/glycob/cwg047

Escobar B, Buccicardi S, Morales G, Wiertz JV. 2009. Bacterial Oxidation of Ferrous Iron and RISCs at Low Temperatures: Their Effect on Acid Mine Drainage and Bioleaching of Sulphide Minerals. Advanced Materials Research. 71–73:433–436. https://doi.org/10.4028/www.scientific.net/AMR.71-73.433

Galleguillos PA, Grail BM, Hallberg KB, Demergasso CS, Johnson DB. 2018. Identification of trehalose as a compatible solute in different species of acidophilic bacteria. J Microbiol. 56(10):727–733. https://doi.org/10.1007/s12275-018-8176-2

Guerra-Bieberach G, Ccorahua-Santo R, Eca A, Bernaldo J, Sánchez T, Rojas-Ayala C, Ramirez P. 2017. Expression of Candidate Cold Stress and Metabolic Related Genes in Acidithiobacillus ferrivorans PQ33 Strain Using Ferrous Iron as Electron Donor. Solid State Phenomena. 262:368–371. https://doi.org/10.4028/www.scientific.net/SSP.262.368

Guiliani N, Jerez CA. 2000. Molecular Cloning, Sequencing, and Expression ofomp-40, the Gene Coding for the Major Outer Membrane Protein from the Acidophilic Bacterium Thiobacillus ferrooxidans. Applied and Environmental Microbiology. 66(6):2318–2324. https://doi.org/10.1128/AEM.66.6.2318-2324.2000

Hallberg KB, González-Toril E, Johnson DB. 2010. Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles. 14(1):9–19. https://doi.org/10.1007/s00792-009-0282-y

Hayner GA, Khetan S, Paulick MG. 2017. Quantification of the Disaccharide Trehalose from Biological Samples: A Comparison of Analytical Methods. ACS Omega. 2(9):5813–5823. https://doi.org/10.1021/acsomega.7b01158

Jain NK, Roy I. 2009. Effect of trehalose on protein structure. Protein Science. 18(1):24–36. https://doi.org/10.1002/pro.3

Jain NK, Roy I. 2010. Trehalose and Protein Stability. Current Protocols in Protein Science. 59(1):4.9.1-4.9.12. https://doi.org/10.1002/0471140864.ps0409s59

Kaksonen AH, Deng X, Morris C, Khaleque HN, Zea L, Gumulya Y. 2021. Potential of Acidithiobacillus ferrooxidans to Grow on and Bioleach Metals from Mars and Lunar Regolith Simulants under Simulated Microgravity Conditions. Microorganisms. 9(12):2416. https://doi.org/10.3390/microorganisms9122416

Kandror O, DeLeon A, Goldberg AL. 2002. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proceedings of the National Academy of Sciences. 99(15):9727–9732. https://doi.org/10.1073/pnas.142314099

Kretschmer PM, Bannister AM, O’Brien MK, MacManus-Spencer LA, Paulick MG. 2016. A liquid chromatography tandem mass spectrometry assay for the detection and quantification of trehalose in biological samples. Journal of Chromatography B. 1033–1034:9–16. https://doi.org/10.1016/j.jchromb.2016.08.007

Kruger NJ. 1994. The Bradford Method for Protein Quantitation. In: Walker JM, editor. Basic Protein and Peptide Protocols [Internet]. Totowa, NJ: Humana Press; p. 9–15. https://doi.org/10.1385/0-89603-268-X:9

Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M. 2015. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiology Ecology. 91(4):fiv011. https://doi.org/10.1093/femsec/fiv011

Mamani S, Moinier D, Denis Y, Soulère L, Queneau Y, Talla E, Bonnefoy V, Guiliani N. 2016. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog. Frontiers in Microbiology 7. https://www.frontiersin.org/article/10.3389/fmicb.2016.01365

Meruane G, Vargas T. 2003. Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5–7.0. Hydrometallurgy. 71(1):149–158. https://doi.org/10.1016/S0304-386X(03)00151-8

Osorio H, Mettert E, Kiley P, Dopson M, Jedlicki E, Holmes DS. 2019. Identification and Unusual Properties of the Master Regulator FNR in the Extreme Acidophile Acidithiobacillus ferrooxidans. Frontiers in Microbiology 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.01642

Phadtare S. 2004. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol. 6(2):125–136.

Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. 2004. Differential Protein Expression during Growth of Acidithiobacillus ferrooxidans on Ferrous Iron, Sulfur Compounds, or Metal Sulfides. Applied and Environmental Microbiology. 70(8):4491–4498. https://doi.org/10.1128/AEM.70.8.4491-4498.2004

Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C. 2012. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiology. 12(1):207. https://doi.org/10.1186/1471-2180-12-207

Reina-Bueno M, Argandoña M, Salvador M, Rodríguez-Moya J, Iglesias-Guerra F, Csonka LN, Nieto JJ, Vargas C. 2012. Role of Trehalose in Salinity and Temperature Tolerance in the Model Halophilic Bacterium Chromohalobacter salexigens. PLOS ONE. 7(3):e33587. https://doi.org/10.1371/journal.pone.0033587

Riley M. 1999. Correlates of smallest sizes for microorganisms. Size Limits Very Small Microorg Proc a Work. 21–25. https://www.ncbi.nlm.nih.gov/books/NBK224751/

Rivera-Araya J, Huynh ND, Kaszuba M, Chávez R, Schlömann M, Levicán G. 2020. Mechanisms of NaCl-tolerance in acidophilic iron-oxidizing bacteria and archaea: Comparative genomic predictions and insights. Hydrometallurgy. 194:105334. https://doi.org/10.1016/j.hydromet.2020.105334

Rivera-Araya J, Pollender A, Huynh D, Schlömann M, Chávez R, Levicán G. 2019. Osmotic Imbalance, Cytoplasm Acidification and Oxidative Stress Induction Support the High Toxicity of Chloride in Acidophilic Bacteria. Frontiers in Microbiology 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.02455

Saavedra A, Aguirre P, Gentina JC. 2020. Biooxidation of Iron by Acidithiobacillus ferrooxidans in the Presence of D-Galactose: Understanding Its Influence on the Production of EPS and Cell Tolerance to High Concentrations of Iron. Frontiers in Microbiology 11. https://www.frontiersin.org/article/10.3389/fmicb.2020.00759

Sakaguchi M. 2020. Diverse and common features of trehalases and their contributions to microbial trehalose metabolism. Appl Microbiol Biotechnol. 104(5):1837–1847. https://doi.org/10.1007/s00253-019-10339-7

Sampedro JG, Uribe S. 2004. Trehalose-enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity. Mol Cell Biochem. 256(1):319–327. https://doi.org/10.1023/B:MCBI.0000009878.21929.eb

Schlichter J, Friedrich J, Herenyi L, Fidy J. 2001. Trehalose Effect on Low Temperature Protein Dynamics: Fluctuation and Relaxation Phenomena. Biophysical Journal. 80(4):2011–2017. https://doi.org/10.1016/S0006-3495(01)76171-1

Talla E, Hedrich S, Ji BY, Johnson DB, Bonnefoy V. 2013. Genome Analysis of the Psychrotolerant Acidophile Acidithiobacillus ferrivorans CF27. Advanced Materials Research. 825:145–148. https://doi.org/10.4028/www.scientific.net/AMR.825.145

Tran TTT, Mangenot S, Magdelenat G, Payen E, Rouy Z, Belahbib H, Grail BM, Johnson DB, Bonnefoy V, Talla E. 2017. Comparative Genome Analysis Provides Insights into Both the Lifestyle of Acidithiobacillus ferrivorans Strain CF27 and the Chimeric Nature of the Iron-Oxidizing Acidithiobacilli Genomes. Frontiers in Microbiology 8. https://www.frontiersin.org/article/10.3389/fmicb.2017.01009

Ueoka N, Kouzuma A, Watanabe K. 2016. Missing Iron-Oxidizing Acidophiles Highly Sensitive to Organic Compounds. Microbes Environ. 31(3):244. https://doi.org/10.1264/JSME2.ME16086

Vanaporn M, Titball RW. 2020. Trehalose and bacterial virulence. Virulence. 11(1):1192–1202. https://doi.org/10.1080/21505594.2020.1809326

Zhang Y, Zhang S, Zhao D, Ni Y, Wang W, Yan L. 2020. Complete Genome Sequence of Acidithiobacillus ferrooxidans YNTRS-40, a Strain of the Ferrous Iron- and Sulfur-Oxidizing Acidophile. Microorganisms. 8(1):2. https://doi.org/10.3390/microorganisms8010002

Zhou Q, Gao J, Li Y, Zhu S, He L, Nie W, Zhang R. 2017. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation. Water Science and Technology. 76(6):1347–1359. https://doi.org/10.2166/wst.2017.244

Descargas

Publicado

14.03.2023

Número

Sección

Trabajos originales

Cómo citar

Castañeda-Fernandez , Maria, Marcos Sulca, and Pablo Ramirez. 2023. “Ausencia De síntesis De Trehalosa En Acidithiobacillus Ferrooxidans ATCC 23270 Y Acidithiobacillus Ferrivorans CF27 a Baja Temperatura”. Revista Peruana De Biología 30 (1): e23034. https://doi.org/10.15381/rpb.v30i1.23034.