Pronóstico de consumo de energía eléctrica residencial de corto plazo utilizando algoritmos de aprendizaje automático y profundo
DOI:
https://doi.org/10.15381/risi.v15i2.23909Palabras clave:
Análisis de componentes principales, análisis exploratorio de datos, aprendizaje automático, aprendizaje profundo, red neuronal artificial, regresión linealResumen
El objetivo de esta investigación es crear modelos de predicción de consumo de energía eléctrica para el corto plazo, utilizando el algoritmo de regresión lineal múltiple y una red neuronal artificial. Es una investigación de tipo descriptiva-explicativa, y se usa la metodología de la ciencia de datos para alcanzar el objetivo planteado. Los modelos se entrenan y evalúan utilizando los datos de energía eléctrica facturada mensual en Uruguay, durante el período 2000-2022, además de las mediciones de temperatura ambiente y humedad relativa, así como la variación porcentual del índice de protección al consumidor. A través de un análisis de correlación y de un análisis de componentes principales, se verifica la importancia de las variables explicativas seleccionadas, previo a la obtención de los modelos. El modelo de regresión lineal tuvo un R2 de 0,782 y el modelo de la red neuronal de 0,797, los residuos se distribuyeron normalmente para ambos modelos, y las métricas RMSE, MAE, y MAPE tuvieron valores similares también en ambos modelos. El modelo de la red neuronal tuvo un mejor desempeño, en comparación con el modelo de regresión lineal, en lo que respecta a la predicción de la energía eléctrica para los meses de julio y agosto del año 2022.
Descargas
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2022 César Aristóteles Yajure Ramírez
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
LOS AUTORES RETIENEN SUS DERECHOS:
a. Los autores retienen sus derechos de marca y patente, y también sobre cualquier proceso o procedimiento descrito en el artículo.
b. Los autores retienen el derecho de compartir, copiar, distribuir, ejecutar y comunicar públicamente el artículo publicado en la Revista de investigación de Sistemas e Informática (por ejemplo, colocarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en la Revista de investigación de Sistemas e Informática.
c. Los autores retienen el derecho a hacer una posterior publicación de su trabajo, de utilizar el artículo o cualquier parte de aquel (por ejemplo: una compilación de sus trabajos, notas para conferencias, tesis, o para un libro), siempre que indiquen su publicación inicial en la Revista de investigación de Sistemas e Informática (autores del trabajo, revista, volumen, número y fecha).