Prediction algorithm for detecting closed areas for indiscriminate anchovy fishing, Callao

Authors

  • Brayam Rodriguez Limahuay Universidad Nacional Federico Villarreal, Facultad de Ingeniería Industrial y Sistema, Lima, Peru
  • Ivan Petrlik Azabache Universidad Nacional Federico Villarreal, Facultad de Ingeniería Industrial y Sistema, Lima, Peru
  • Christian Manuel Rodriguez Chilet Universidad Nacional Federico Villarreal, Facultad de Ingeniería Industrial y Sistema, Lima, Peru https://orcid.org/0009-0007-0509-8202
  • Manuel Carranza Avellaneda Universidad Nacional Federico Villarreal, Facultad de Ingeniería Industrial y Sistema, Lima, Peru https://orcid.org/0009-0003-4989-5108
  • Adrian Olulo Veramendi Universidad Nacional Federico Villarreal, Facultad de Ingeniería Industrial y Sistema, Lima, Peru https://orcid.org/0009-0000-4404-6519
  • Erik Loayza Zarate Universidad Nacional Federico Villarreal, Facultad de Ingeniería Industrial y Sistema, Lima, Peru https://orcid.org/0009-0005-0968-2217

DOI:

https://doi.org/10.15381/risi.v17i1.28435

Keywords:

prediction algorithm, closed areas, fishing, python, anchoveta

Abstract

Indiscriminate anchoveta fishing in Peru threatens the sustainability of this species and the balance of the marine ecosystem. The study proposes a prediction algorithm developed in Python to identify closed areas, evaluating variables such as quantity of fish, water temperature and age of anchovetas. The CRISP-DM methodology guides the process, divided into phases of data understanding, preparation and modeling, followed by model evaluation and deployment. The results show that areas such as Chorrillos exceed the 20% threshold of juvenile catch, indicating the need for stricter protection measures. In addition, an upward trend in the total catch of anchovetas is observed, suggesting an increase in demand or changes in the marine ecosystem. The cumulative probability analysis reveals stability in the juvenile population, and the scatter plots highlight the relationship between geographic coordinates and catches, aiding in fisheries management. The overall conclusion underlines the urgency of sustainable management, the implementation of monitoring technologies and the promotion of responsible fishing practices to protect marine biodiversity and guarantee the economic and food viability of the Peruvian fishing sector.

Downloads

Download data is not yet available.

Downloads

Published

2024-07-31

Issue

Section

Artículos

How to Cite

[1]
“Prediction algorithm for detecting closed areas for indiscriminate anchovy fishing, Callao”, Rev.Investig.sist.inform., vol. 17, no. 1, pp. 221–238, Jul. 2024, doi: 10.15381/risi.v17i1.28435.