Software de reconhecimento de voz para melhorar a pronúncia do inglês

Autores

DOI:

https://doi.org/10.15381/lengsoc.v23i2.26074

Palavras-chave:

autonomia, ensino de línguas, feedback, pronúncia, software de reconhecimento de voz

Resumo

Através dos avanços tecnológicos, surgiram desafios e oportunidades em diversos campos. As salas de aula de idiomas estão entre os cenários mais impactados, pois os alunos conseguiram integrar recursos tecnológicos ao seu processo de aprendizado. Um dos aspectos em que a tecnologia tem se mostrado relevante para o aprendizado de línguas é a pronúncia. Embora a instrução e o feedback nesse âmbito sejam cruciais, o tempo disponível na sala de aula para seu desenvolvimento costuma ser limitado. Por essa razão, este estudo analisa o impacto do uso do software de reconhecimento de voz (SRV) como ferramenta complementar para o ensino da pronúncia do inglês como língua estrangeira (ILE). Metodologicamente, o design é qualitativo. A amostra é constituída por 10 alunos do nível básico de ILE de um centro de idiomas de uma universidade em Bogotá, Colômbia. Os dados foram coletados por meio de notas de campo, gravações de áudio e vídeo, bem como diários dos alunos. Entre os resultados, constatou-se que o feedback do SRV contribui para a melhoria da pronúncia dos alunos; além disso, motiva seu compromisso com a aprendizagem e promove sua autonomia.

 

Biografia do Autor

  • Laura Sánchez, Universidad El Bosque, Bogotá, Colombia

    Is an associate instructor at Universidad El Bosque in Bogotá, Colombia. She holds a bachelor's degree in Bilingual Education with an emphasis on English teaching from Universidad El Bosque, and a master's degree in education from the same institution. She has participated in the creation of online EFL learning material at the language center of Universidad El Bosque. Her research interests include dynamic assessment, teaching and learning methods on English as a foreign language, and ICT for educational purposes.

  • Andrés Morales, Universidad El Bosque, Bogotá, Colombia

    Works as an academic coach at Santillana in Bogotá, Colombia. He completed his undergraduate degree in modern languages at Universidad Javeriana, and a postgraduate program in university teaching at Universidad El Bosque. With over 10 years of experience as an English teacher in various settings, including universities and language academies, he is enthusiastic about combining technology with teaching.

  • Ingrid Rodríguez, Universidad El Bosque, Bogotá, Colombia

    is an associate Professor at Universidad El Bosque in Bogotá, Colombia. She holds a bachelor's degree in Spanish and English from Universidad Pedagógica Nacional, and a master’s degree in Applied Linguistics from Universidad Distrital Francisco José de Caldas. She is an active member of the research group Educación e Investigación Unbosque and directs a research hotbed called Equilateral Knowledge from the same institution. Her research interests include beliefs and reflections, academic writing, teaching methodologies and ICT for educational purposes.

Referências

Ahmad, Y. (2018). Teaching English Pronunciation of Suprasegmental Features on Students of English Education. SHS Web of Conferences, (42), 1-5. https://doi.org/10.1051/shsconf/20184200048

Asratie, M., Wale, B., and Aylet, Y. (2023). Effects of using educational technology tools to enhance EFL students’ speaking performance. Education and Information Technologies, (28), 1-21. https://link.springer.com/article/10.1007/s10639-022-11562-y

Bogdan, R., and Biklen, S. (1997). Qualitative Research in Education. Allyn & Bacon.

Brookhart, S. M. (2008). How to Give Effective Feedback to Your Students. Association for Supervision & Curriculum Development. https://ebookcentral-proquest-com.ezproxy.unbosque.edu.co/lib/bibliobosque-ebooks/detail.action?docID=361035

Bryman, A. (2012). Social Research Methods (4th ed.). Oxford University Press.

Bryant A., and Charmaz, K. (2007). Grounded theory research: Methods and practices. In A. Bryant and K. Charmaz (Eds.), The Sage handbook of Grounded Theory (pp. 1-28). Sage Publications. https://doi.org/10.4135/9781848607941

Çelik, S., and Baran, E. (2022). Student response system: its impact on EFL students’ vocabulary achievement. Technology, Pedagogy and Education, 31(2), 141-158. https://doi.org/10.1080/1475939X.2021.1986125

Çetin, E. (2021). Digital storytelling in teacher education and its effect on the digital literacy of pre-service teachers. Thinking Skills and Creativity, (39), 100760. https://www.tandfonline.com/doi/full/10.1080/1475939X.2021.1986125

Council of Europe. (2022). Common European Framework of Reference for Languages: Learning, teaching, assessment – Companion volume. Council of Europe Publishing. www.coe.int/lang-cefr

Derwing, T., and Munro, M. (2015). Pronunciation Fundamentals: Evidence-based Perspectives for L2 Teaching and Research. John Benjamins Publishing Company.

Evers, K., and Chen, S. (2021). Effects of Automatic Speech Recognition Software on Pronunciation for Adults with Different Learning Styles. Journal of Educational Computing Research, 59(4), 669-685. https://journals.sagepub.com/doi/abs/10.1177/0735633120972011

Ferrando, E. (2023). La motivación en la enseñanza de segundas lenguas: aproximación teórico-práctica en el ámbito del enfoque integrado AICLE. Lengua y Sociedad, 22(1), 117-137. https://doi.org/10.15381/lengsoc.v22i1.23650

Hazen, H. (2020). Use of oral examinations to assess student learning in the social sciences. Journal of Geography in Higher Education, 44(4), 592-607. https://www.tandfonline.com/doi/abs/10.1080/03098265.2020.1773418?journalCode=cjgh20

Kelly, G. (2000). How to Teach Pronunciation. Longman.

Levis, J., and Suvorov, R. (2012). Automatic Speech Recognition. In C. Chapelle (Ed.), The Concise Encyclopedia of Applied Linguistics. Wiley-Blackwell. https://doi.org/10.1002/9781405198431.wbeal0066.pub2

Macklem, G. (2015). Boredom in the classroom: Addressing Student Motivation, Self-regulation, and Engagement in Learning. Springer International Publishing. https://doi.org/10.1007/978-3-319-13120-7

Moccozet, L. (2012, July). Introducing Learning Performance in Personal Learning Environments. 2012 IEEE 12th International Conference on Advanced Learning Technologies. https://doi.org/10.1109/icalt.2012.75

Plailek, T., and Essien, A. (2021). Pronunciation problems and factors affecting English pronunciation of EFL students. Turkish Journal of Computer and Mathematics Education, 12(12), 2026-2033. http://ezproxy.unbosque.edu.co:2048/login?url=https://www.proquest.com/scholarly-journals/pronunciation-problems-factors-affecting-english/docview/2622819321/se-2

Meilani, F., Sukiyadi, D., and Purnawarman, P. (29 December 2021). Online Individual Corrective Feedback: English Language Learners’ Beliefs in Pronunciation Learning. In Proceedings of the International Conference on Sustainable Innovation Track Humanities Education and Social Sciences (ICSIHESS 2021) (pp. 9-14). Atlantis Press. https://www.atlantis-press.com/proceedings/icsihess-21/125967893

Syauqi, K., Munadi, S., and Triyono, M. (2020). Students’ Perceptions toward Vocational Education on Online Learning during the COVID-19 Pandemic. International Journal of Evaluation and Research in Education, 9(4), 881-886. http://doi.org/10.11591/ijere.v9i4.20766

Stratton, S. (2021). Population Research: Convenience Sampling Strategies. Prehospital and Disaster Medicine, 36(4), 373-374. https://doi.org/10.1017/S1049023X 21000649

Vahdany, F., Divsar, H., and Alem, M. (2022). The Interface between Pronunciation Learning Strategies (PLS) and Pronunciation Achievement. Iranian Journal of English for Academic Purposes, 11(2), 56-73. https://journalscmu.sinaweb.net/article_154305_a2bb683213798fd5cf858b86081681c7.pdf

Wang, B., Teo, T., and Yu, S. (2017). Teacher feedback to student oral presentations in EFL classrooms: a case study. Journal of Education for Teaching, 43(2), 262-264. https://doi.org/10.1080/02607476.2016.1257507

Yokota, Y., Iwatsubo, T., Takeuchi, T., Hakoda, A., Nakagawa, Y., Kawabata, K., Inoue, Y., Miyamoto, H., Ikeo, K., Kojima, Y., Miyazaki, J., Abe, T., and Higuchi, K. (2022). Effects of a novel endoscopic reporting system with voice recognition on the endoscopic procedure time and report preparation time: propensity score matching analysis. Journal of Gastroenterology, 1-9. https://link.springer.com/article/10.1007/s00535-021-01835-7

Zuber-Skerritt, O., and Wood, L. (Eds.). (2019). Action Learning and Action Research: Genres and Approaches. Emerald Publishing Limited. https://doi.org/10.1108/9781787695375

Downloads

Publicado

2024-12-30

Edição

Seção

Dossier sobre inteligencia artificial, lenguaje y discurso digital

Como Citar

Sánchez Salgado, L. V., Morales Chocontá, M. A., & Rodríguez Granados, I. J. (2024). Software de reconhecimento de voz para melhorar a pronúncia do inglês. Lengua Y Sociedad, 23(2), 963-983. https://doi.org/10.15381/lengsoc.v23i2.26074