Os retos da lingüística forense na era da IA
DOI:
https://doi.org/10.15381/lengsoc.v23i2.29462Palavras-chave:
Linguística Forense, Inteligência Artificial, atribuição de autoria, deepfakes, textos híbridosResumo
Neste artigo, analisam-se os desafios enfrentados pela linguística forense na era da Inteligência Artificial. O foco está em descrever a geração automática de texto e voz por meio da IA e examinar como isso impacta a atribuição de autoria e a autenticação de provas em contextos judiciais. Além disso, examina as ferramentas de detecção atuais e suas limitações. Os resultados indicam que as metodologias tradicionais podem não ser suficientes para detectar textos gerados por IA, destacando a necessidade de desenvolver novas ferramentas e abordagens interdisciplinares. A pesquisa ressalta a importância de desenvolver marcos éticos e legais que regulem o uso da IA em processos judiciais.
Referências
Alhafni, B., Kulkarni, V., Kumar, D., y Raheja, V. (2024). Personalized Text Generation with Fine-Grained Linguistic Control. arXiv. https://doi.org/10.48550/arXiv.2402.04914
ASIS International. (2024). Putting Generative AI to Use for Crime: Fraud, Disinformation, Exploitation, and More. ASIS. https://www.asisonline.org
Brennan, M., Afroz, S., y Greenstadt, R. (2012). Adversarial stylometry: Circumventing authorship recognition to preserve privacy and anonymity. ACM Transactions on Information and System Security (TISSEC), 15(3), 1-22. https://doi.org/10.1145/2382448.238245
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, Z., Winter, C., y Amodei, D. (2020). Language models are few-shot learners. arXiv. https://doi.org/10.48550/arXiv.2005.14165
Chakraborty, S., Bedi, A. S., Zhu, S., An, B., Manocha, D., y Huang, F. (2023). On the possibilities of ai-generated text detection. arXiv. https://doi.org/10.48550/arXiv.2304.04736
Coulthard, M., y Johnson, A. (2007). An Introduction to Forensic Linguistics: Language in Evidence. Cambridge University Press.
Dinis-Oliveira, R. J., y Azevedo, R. M. (2023). ChatGPT in forensic sciences: a new Pandora’s box with advantages and challenges to pay attention. Forensic Sciences Research, 8(4), 275-279. https://doi.org/10.1093/fsr/owad039
Departamento de Cyber Threat Intelligence de NTT DATA Cybersecurity. (2024). Informe de tendencias y ciberamenazas del 1er semestre de 2024. NTT DATA. https://es.nttdata.com/newsfolder/los-ciberataques-supondran-un-coste-de-10000-millones-en-2024
Departamento de Justicia de EE.UU. (2024, 9 de julio). Justice Department Leads Efforts Among Federal, International, and Private Sector Partners. United States Attorney’s Office. https://www.justice.gov/usao-ndil/pr/justice-department-leads-efforts-among-federal-international-and-private-sector
Eder, M., Rybicki, J., y Kestemont, M. (2016). Stylometry with R: A package for computational text analysis. R Journal, 8(1), 107-121. https://journal.r-project.org/archive/2016/RJ-2016-007/index.html
Europol. (2024). New report finds that criminals leverage AI for malicious use – and it’s not just deep fakes. https://www.europol.europa.eu/media-press/newsroom/news/new-report-finds-criminals-leverage-ai-for-malicious-use-%E2%80%93-and-it%E2%80%99s-not-just-deep-fakes
FBI. (2024, 8 de mayo). FBI Warns of Increasing Threat of Cyber Criminals Utilizing Artificial Intelligence. https://www.fbi.gov/contact-us/field-offices/sanfrancisco/news/fbi-warns-of-increasing-threat-of-cyber-criminals-utilizing-artificial-intelligence
Floridi, L., Cowls, J., King, T. C., y Taddeo, M. (2021). How to design AI for social good: Seven essential factors. Ethics, Governance, and Policies in Artificial Intelligence, 26, 125-151. https://link.springer.com/article/10.1007/s11948-020-00213-5
Fobbe, E. (2020). Text-linguistic analysis in forensic authorship attribution. Journal of Language and Law (JLL), 9, 111–123. https://www.languageandlaw.eu/jll/article/view/78
Franganillo, J. (2023). La inteligencia artificial generativa y su impacto en la creación de contenidos mediáticos. Methaodos, revista de ciencias sociales, 11(2), 1-17. https://doi.org/10.17502/mrcs.v11i2.710
Federal Trade Comission. (2024, 25 de septiembre). FTC Announces Crackdown on Deceptive AI Claims and Schemes Federal Trade Commission. Recuperado de https://www.ftc.gov/news-events/news/press-releases/2024/09/ftc-announces-crackdown-deceptive-ai-claims-schemes
Gehrmann, S., Strobelt, H., y Rush, A. M. (2019). GLTR: Statistical Detection and Visualization of Generated Text. arXiv. https://doi.org/10.48550/arXiv.1906.04043
Gillespie, J. H., y McKee, J. (1998). The Text Analysis Program: Developing students' analytical skills. ReCALL, 10(2), 44-53. https://www.cambridge.org/core/journals/recall/article/abs/text-analysis-program-developing-students-analytical-skills/047569D72795ADEBA82B9D2D97BEC457
Giulianelli, M., Baan, J., Aziz, W., Fernández, R., y Plank, B. (2023). What comes next? evaluating uncertainty in neural text generators against human production variability. arXiv. https://doi.org/10.48550/arXiv.2305.11707
Gómez, M. J. (2023). “Mamá, ayúdame”: Inteligencia Artificial imita voz de adolescente para fingir secuestro y exigir rescate. Recuperado de https://www.latercera.com/tendencias/noticia/mama-ayudame-inteligencia-artificial-imita-voz-de-adolescente-para-fingir-secuestro-y-exigir-rescate/XTQEUXTJZJH5BJJXHRJX7QID4E/
Grant, T. (2022). The idea of progress in forensic authorship analysis. Cambridge University Press.
Hadnagy, C., y Fincher, M. (2015). Phishing Dark Waters: The Offensive and Defensive Sides of Malicious Emails. John Wiley & Sons.
Ji, J., Li, R., Li, S., Guo, J., Qiu, W., Huang, Z., Chen, C., Xinru, J., y Lu, X. (2024). Detecting machine-generated texts: Not just" ai vs humans" and explainability is complicated. arXiv. https://doi.org/10.48550/arXiv.2406.18259
Juola, P. (2015). The Rowling case: a proposed standard analytic protocol for authorship questions. Digital Scholarship in the Humanities, 30, 100-113. https://doi.org/10.1093/llc/fqv040
Lau, H. T., y Zubiaga, A. (2024). Understanding the Effects of Human-written Paraphrases in LLM-generated Text Detection. arXiv.
Maras, M. H. y Alexandrou, A. (2018). Determining authenticity of video evidence in the age of artificial intelligence and in the wake of Deepfake videos. The International Journal of Evidence & Proof, 23, 255-262. https://doi.org/10.1177/1365712718807226
Mindner, L., Schlippe, T., y Schaaff, K. (2023). Classification of human-and ai-generated texts: Investigating features for chatgpt. En International Conference on Artificial Intelligence in Education Technology (pp. 152-170). Springer Nature Singapore. https://doi.org/10.48550/arXiv.2308.05341
Muñoz-Basols, J., y Fuertes Gutiérrez, (2024). Oportunidades de la Inteligencia Artificial (IA) en la enseñanza y el aprendizaje de lenguas. En J. Muñoz-Basols, M. Fuertes Gutiérrez, y L. Cerezo (Eds.), La enseñanza del español mediada por tecnología: De la justicia social a la Inteligencia Artificial (IA) (pp. 343-360). Routledge.
Queralt, S. (2023). Los aportes de la lingüística forense contra el cibercrimen. Del Español. Revista de Lengua, 1, 259-271. https://doi.org/10.33776/dlesp.v1.7923
Perkins, R. (2021). The Application of Forensic Linguistics in Cybercrime Investigations. Policing: A Journal of Policy and Practice, 15, 168–78. https://doi.org/10.1093/police/pay097
Sousa-Silva, R. (2022). Fighting the Fake: A Forensic Linguistic Analysis to Fake News Detection. International Journal for the Semiotics of Law - Revue internationale de Sémiotique juridique, 35, 2409–2433. https://doi.org/10.1007/s11196-022-09901-w
Sophos. (2019, 5 de septiembre). Scammers deepfake CEO’s voice to talk underling into $243000 transfer. Sophos News. https://news.sophos.com/en-us/2019/09/05/scammers-deepfake-ceos-voice-to-talk-underling-into-243000-transfer/?utm_source=chatgpt.com
Unesco. (2024). Directrices de la UNESCO para el uso de sistemas de inteligencia artificial en juzgados y tribunales. Unesdoc. Recuperado de https://unesdoc.unesco.org/ark:/48223/pf0000390781_spa
Wallace, E., Feng, S., Kandpal, N., Gardner, M., y Singh, S. (2019). Universal adversarial triggers for attacking and analyzing NLP. arXiv. https://doi.org/10.48550/arXiv.1908.07125
Weichert, J., y Dimobi, C. (2024). DUPE: Detection Undermining via Prompt Engineering for Deepfake Text. arXiv. https://doi.org/10.48550/arXiv.2404.11408
Ypma, R. J. F., Ramos, D., y Meuwly, D. (2023). AI-based Forensic Evaluation in Court: The Desirability of Explanation and the Necessity of Validation. En Z. Geradts y K. Franke (Eds.), Artificial Intelligence (AI) in Forensic Sciences. Wiley.
Zellers, R., Holtzman, A., Rashkin, H., Bisk, Y., Farhadi, A., Roesner, F., y Choi, Y. (2019). Defending against neural fake news. arXiv. https://doi.org/10.48550/arXiv.1905.12616
Zeng, Z., Liu, S., Sha, L., Li, Z., Yang, K., Liu, S., Gašević, D. y Chen, G. (2024). Detecting AI-Generated Sentences in Human-AI Collaborative Hybrid Texts: Challenges, Strategies, and Insights. arXiv. https://doi.org/10.48550/arXiv.2403.03506
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Sheila Queralt

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
LOS AUTORES RETIENEN SUS DERECHOS:
a. Los autores retienen sus derechos de marca y patente, y también sobre cualquier proceso o procedimiento descrito en el artículo.
b. Los autores pueden presentar a la revista Lengua y Sociedad, trabajos difundidos como pre-print en repositorios. Esto debe hacerse conocer en la carta de presentacion del trabajo.
c. Los autores retienen el derecho de compartir, copiar, distribuir, ejecutar y comunicar públicamente el artículo publicado en la revista Lengua y Sociedad (por ejemplo, colocarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en la revista Lengua y Sociedad.
d. Los autores retienen el derecho a hacer una posterior publicación de su trabajo, de utilizar el artículo o cualquier parte de aquel (por ejemplo: una compilación de sus trabajos, notas para conferencias, tesis, o para un libro), siempre que indiquen su publicación inicial en la revista Lengua y Sociedad (autores del trabajo, revista, volumen, número y fecha).