Cyanide degradation in gold ore leaching effluent by native Pseudomonas pseudoalcaligenes

Authors

  • Vladimir Alejandro Arias Arce Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica. Departamento de Ingeniería Metalúrgica. Lima, Peru https://orcid.org/0000-0002-7053-9656
  • Daniel Florencio Lovera Dávila Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica. Departamento de Ingeniería Metalúrgica. Lima, Peru
  • Ismael Molina Pereyra Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica. Departamento de Ingeniería Metalúrgica. Lima, Peru
  • Tito Libio Sánchez Rojas Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería Geológica, Minera, Metalúrgica y Geográfica. Departamento de Ingeniería Metalúrgica. Lima, Peru

DOI:

https://doi.org/10.15381/iigeo.v27i54.27346

Keywords:

Bioremediation, cyanidation, cyanide degradation, gold ores, P. pseudoalcaligenes

Abstract

The generation of cyanide-containing tailings is increasing, so the search for methodologies and microorganisms to counteract the negative action to the detriment of the environment is incessant. The present study was carried out with strains of Pseudomonas pseudoalcaligenes isolated from effluents of the gold ore cyanidation process. First, tolerance tests were performed in solutions with 250 ppm sodium cyanide at different pH values, using an initial population of 4.00E+07 CFU/mL and agitated for a period of 54 hours; degradation up to 39.2% free cyanide (CN-) was observed at a pH of 9.8. Then, in the CN- degradation for 144 hours, in media consisting of cyanidation process effluent solution at pH 10.5, with an initial bacterial population of 9.94E+08 CFU/mL and at concentrations of 80 to 700 ppm of CN-, reductions of 55.89 to 84.79 % of cyanide were obtained, expressed with the equations: y80 = -0.2393x + 73.05 and y700 = -3.6439x + 617.98, respectively. It was determined that the degradation of cyanide is directly related to the cyanide content in the solution; that is, the higher the cyanide concentration, the higher the abatement

References

Agurto Ludeña, A. C., & Arzapalo Marcelo, R. (2021). Revisión sistemática y meta-análisis: Aplicación de microorganismos para la degradación de cianuro en las aguas residuales por actividades mineras auríferas. [Tesis de grado, Universidad César Vallejo]. https://repositorio.ucv.edu.pe/handle/20.500.12692/85740

Akcil, A., Karahan, A. G., Ciftci, H., & Sagdic, O. (2003). Biological treatment of cyanide by natural isolated bacteria (Pseudomonas sp.). Minerals Engineering, 16(7), 643–649. https://doi.org/https://doi.org/10.1016/S0892-6875(03)00101-8

Alvarado-Lopez M.J., Garrido-Hoyos S.E., Raynal-Gutierrez M.E., El-Kassis E.G., Marrugo-Negrete J.L., Rosano-Ortega G. (2022). Native Cyanide Degrading Bacterial Consortium and Its Potential for Gold Mine Tailings Tertiary Biotechnological Treatment. Chemical Engineering Transactions, 94, 1441-1446. https://www.cetjournal.it/cet/22/94/240.pdf

Rosario, C. G. A., Vallenas-Arévalo, A. T., Arévalo, S. J., Espinosa, D. C. R., & Tenório, J. A. S. (2023). Biodegradation of cyanide using a Bacillus subtilis strain isolated from artisanal gold mining tailings. Brazilian Journal of Chemical Engineering, 40(1), 129–136. https://doi.org/10.1007/s43153-022-00228-4

Alvillo-Rivera, A., Garrido-Hoyos, S., Buitrón, G., Thangarasu-Sarasvathi, P., & Rosano-Ortega, G. (2021). Biological treatment for the degradation of cyanide: A review. Journal of Materials Research and Technology, 12, 1418–1433. https://doi.org/10.1016/j.jmrt.2021.03.030

Anand, V., & Pandey, A. (2022). Role of microbes in biodegradation of cyanide and its metal complexes. In Development in Wastewater Treatment Research and Processes (pp. 205–224). Elsevier. https://doi.org/10.1016/B978-0-323-85839-7.00016-5

Anning, C., Wang, J., Chen, P., Batmunkh, I., & Lyu, X. (2019). Determination and detoxification of cyanide in gold mine tailings: A review. Waste Management & Research: The Journal for a Sustainable Circular Economy, 37(11), 1117–1126. https://doi.org/10.1177/0734242X19876691

Arias-Arce, V. A., Sánchez-Rojas, T. L., Castillo-Aldave, Y., & Vega-Alave, R. (2023). Aislamiento y adaptación de Pseudomonas pseudoalcaligenes en un efluente de proceso de cianuración de minerales auríferos. Revista Del Instituto de Investigación de La Facultad de Minas, Metalurgia y Ciencias Geográficas, 26(52), e26547. https://doi.org/10.15381/iigeo.v26i52.26547

Ashbolt, N. J. (2015). Microbial Contamination of Drinking Water and Human Health from Community Water Systems. Current Environmental Health Reports, 2(1), 95–106. https://link.springer.com/article/10.1007/s40572-014-0037-5

Begum, S., Rath, S. K., & Rath, C. C. (2022). Applications of Microbial Communities for the Remediation of Industrial and Mining Toxic Metal Waste: A Review. Geomicrobiology Journal, 39(3–5), 282–293. https://doi.org/10.1080/01490451.2021.1991054

Cabello, P., Luque-Almagro, V. M., Olaya-Abril, A., Sáez, L. P., Moreno-Vivián, C., & Roldán, M. D. (2018). Assimilation of cyanide and cyano-derivatives by Pseudomonas pseudoalcaligenes CECT5344: from omic approaches to biotechnological applications. FEMS Microbiology Letters, 365(6). https://doi.org/10.1093/femsle/fny032

Copari Mamani, A. B., Carpio Mamani, M., & Cáceda Quiroz, C. J. (2020). Optimización de factores fisicoquímicos en la biodegradación de cianuro por Klebsiella sp.ART1, en biorreactor aireado. Ciencia & Desarrollo, 26, 20–31. https://revistas.unjbg.edu.pe/index.php/cyd/article/view/929

Cotrina, D. C., & Mamani, M. C. (2022). Biodegradación del cianuro contenido en el lixiviado de un mineral aurífero. Revista Ciencias Biológicas y Ambientales, 1(1). http://www.revistas.unjbg.edu.pe/index.php/recibya/article/view/1596

Del Carpio H., Rueda M., Pacheco H. y Bernabe J. C. (2007). Caracterización microbiológica de Pseudomonas pseudoalcalígenes (ATCC 17440) y su capacidad biodegradativa de cianuro presente en relaves mineros. Veritas, 10(1), 132-136. https://revistas.ucsm.edu.pe/ojs/index.php/veritas/article/view/52

Dong, K., Xie, F., Wang, W., Chang, Y., Lu, D., Gu, X., & Chen, C. (2021). The detoxification and utilization of cyanide tailings: A critical review. Journal of Cleaner Production, 302, 126946. https://doi.org/10.1016/j.jclepro.2021.126946

Dwivedi, N., Balomajumder, C., & Mondal, P. (2018). Applications of Microorganisms in Biodegradation of Cyanide from Wastewater. In Advances in Microbial Biotechnology (pp. 301–328). Apple Academic Press. https://doi.org/10.1201/9781351248914-12

Gordillo González, M. C. (2018). Biodegradación de cianuro en aguas y suelos contaminados por la minería de oro. (Bachelor's thesis, Fundación Universidad de América). http://52.0.229.99/handle/20.500.11839/7134

Gupta, N., Balomajumder, C., & Agarwal, V. K. (2010). Enzymatic mechanism and biochemistry for cyanide degradation: A review. Journal of Hazardous Materials, 176(1–3), 1–13. https://doi.org/10.1016/j.jhazmat.2009.11.038

Gurbuz, F., Ciftci, H., Akcil, A., & Karahan, A. G. (2004). Microbial detoxification of cyanide solutions: a new biotechnological approach using algae. Hydrometallurgy, 72(1–2), 167–176. https://doi.org/10.1016/j.hydromet.2003.10.004

Ibáñez García, M. I. (2019). Biorremediación de residuos industriales cianurados de la joyería por la bacteria alcalófila Pseudomonas pseudoalcaligenes CECT5344. [Tesis doctoral, Universidad de Cordoba] http://hdl.handle.net/10396/18354 http://hdl.handle.net/10396/18354

Ibáñez, M. I., Cabello, P., Luque-Almagro, V. M., Sáez, L. P., Olaya, A., Sánchez de Medina, V., Luque de Castro, M. D., Moreno-Vivián, C., & Roldán, M. D. (2017). Quantitative proteomic analysis of Pseudomonas pseudoalcaligenes CECT5344 in response to industrial cyanide-containing wastewaters using Liquid Chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS). PLOS ONE, 12(3), e0172908. https://doi.org/10.1371/journal.pone.0172908

Kaur, G., Kaur, D., & Gupta, S. (2021). The Role of Microorganisms in Remediation of Environmental Contaminants (pp. 421–450). https://doi.org/10.1007/978-981-15-5499-5_15

Khamar, Z., Makhdoumi-Kakhki, A., & Mahmudy Gharaie, M. H. (2015). Remediation of cyanide from the gold mine tailing pond by a novel bacterial co-culture. International Biodeterioration & Biodegradation, 99, 123–128. https://doi.org/10.1016/j.ibiod.2015.01.009

Luque-Almagro, V. M. (2004). Metabolismo del cianuro y del cianato en pseudomonas pseudoalcaligenas cect5344 aplicaciones biotecnológicas (Doctoral dissertation, Universidad de Córdoba). https://dialnet.unirioja.es/servlet/tesis?codigo=70625

Luque-Almagro, V. M., Moreno-Vivián, C., & Roldán, M. D. (2016). Biodegradation of cyanide wastes from mining and jewellery industries. Current Opinion in Biotechnology, 38, 9–13. https://doi.org/10.1016/j.copbio.2015.12.004

Marín Vallejo, L. M., Ochoa Ruilova, J. A., & Prado Farfán, K. V. (2010). Análisis comparativo in vitro de la actividad biodegradadora de bacterias del género Pseudomonas sp. y microorganismos nativos, para su uso en un proceso de biorremediación in situ de sales de cianuro (Bachelor's thesis). https://dspace.ups.edu.ec/handle/123456789/1524

Martinez, S., & Aguilar Hernández, A. (2022). El papel de los procariotas en la degradación del cianuro. Herreriana, 3(2), 33–36. https://doi.org/10.29057/h.v3i2.8162

Mekuto L., Jackson V.A. & Obed Ntwampe, S. K. (2014). Biodegradation of Free Cyanide Using Bacillus Sp. Consortium Dominated by Bacillus Safensis, Lichenformis and Tequilensis Strains: A Bioprocess Supported Solely with Whey. Journal of Bioremediation & Biodegradation, 05(02). https://doi.org/10.4172/2155-6199.S18-004

Moradkhani, M., Yaghmaei, S., & Ghobadi Nejad, Z. (2017). Biodegradation of Cyanide under Alkaline Conditions by a Strain of Pseudomonas Putida Isolated from Gold Mine Soil and Optimization of Process Variables through Response Surface Methodology (RSM). Periodica Polytechnica Chemical Engineering, 62(3), 265–273. https://doi.org/10.3311/PPch.10860

Morillo, J., & Guevara, J. (2015). Degradación de cianuro de sodio por seudomonas sp. a dos temperaturas y tres pH. Revista REBIOLEST, 3(1), 23-32. https://revistas.unitru.edu.pe/index.php/ECCBB/article/view/892

Mosher, J. B., & Figueroa, L. (1996). Biological oxidation of cyanide: A viable treatment option for the minerals processing industry? Minerals Engineering, 9(5), 573–581. https://doi.org/10.1016/0892-6875(96)00044-1

Panay, A. J., Vargas-Serna, C. L., & Carmona-Orozco, M. L. (2020). Biodegradation of cyanide using recombinant Escherichia coli expressing Bacillus pumilus cyanide dihydratase. Revista Colombiana de Biotecnología, 22(1), 27–35. https://doi.org/10.15446/rev.colomb.biote.v22n1.79559

Park, J. M., Trevor Sewell, B., & Benedik, M. J. (2017). Cyanide bioremediation: the potential of engineered nitrilases. Applied Microbiology and Biotechnology, 101(8), 3029–3042. https://doi.org/10.1007/s00253-017-8204-x

Rosario, C. G. A., Vallenas-Arévalo, A. T., Arévalo, S. J., Espinosa, D. C. R., & Tenório, J. A. S. (2023). Biodegradation of cyanide using a Bacillus subtilis strain isolated from artisanal gold mining tailings. Brazilian Journal of Chemical Engineering, 40(1), 129–136. https://doi.org/10.1007/s43153-022-00228-4

Sáez, L. P., Cabello, P., Ibáñez, M. I., Luque-Almagro, V. M., Roldán, M. D., & Moreno-Vivián, C. (2019). Cyanate Assimilation by the Alkaliphilic Cyanide-Degrading Bacterium Pseudomonas pseudoalcaligenes CECT5344: Mutational Analysis of the cyn Gene Cluster. International Journal of Molecular Sciences, 20(12), 3008. https://doi.org/10.3390/ijms20123008

Sernaque Aguilar, Y. A., Cornejo La Torre, M., Regard, J. P., & Mialhe Matonnier, E. L. (2019). Caracterización molecular de bacterias cultivables y no cultivables procedentes de pozas de lixiviación con cianuro. Revista Peruana de Biología, 26(2), 275–282. https://doi.org/10.15381/rpb.v26i2.16383

Tiong, B., Bahari, Z. M., Lee, N. S. I. S., Jaafar, J., Ibrahim, Z., & Shahir, S. (2015). Cyanide degradation by Pseudomonas pseudoalcaligenes strain W2 isolated from mining effluent. Sains Malaysiana, 44(2), 233-238. http://journalarticle.ukm.my/8307/1/10_Belinda_Tiong.pdf

Tuya Salas, J. D. (2014). Evaluación de la capacidad degradativa de cianuro por bacterias alcalófilas aisladas de los relaves de la planta concentradora de metales Mesapata Cátac-Ancash. [Tesis de grado, Universidad Politécnica Salesiana] http://cybertesis.unmsm.edu.pe/handle/20.500.12672/3641

Published

2024-12-13

Issue

Section

Artículos

How to Cite

Arias Arce, V. A., Lovera Dávila, D. F., Molina Pereyra, I., & Sánchez Rojas, T. L. (2024). Cyanide degradation in gold ore leaching effluent by native Pseudomonas pseudoalcaligenes. Revista Del Instituto De investigación De La Facultad De Minas, Metalurgia Y Ciencias geográficas, 27(54), e27346 . https://doi.org/10.15381/iigeo.v27i54.27346