Ausencia de síntesis de trehalosa en Acidithiobacillus ferrooxidans ATCC 23270 y Acidithiobacillus ferrivorans CF27 a baja temperatura
DOI:
https://doi.org/10.15381/rpb.v30i1.23034Palabras clave:
Acidithiobacillus, ensayo enzimático, biosíntesis, trehalosaResumen
La trehalosa es un tipo de carbohidrato, que en procariotas protege contra diferentes tipos de estrés y también se utiliza como fuente de almacenamiento de carbono. Hay cuatro formas diferentes de sintetizar trehalosa en Acidithiobacillus ferrivorans y dos en Acidithiobacillus ferrooxidans, pero su propósito sigue siendo desconocido. Este estudio tuvo como objetivo medir la producción de trehalosa en diferentes condiciones mediante su cuantificación en tres medios de cultivo a dos temperaturas diferentes. También se evaluó la cinética de crecimiento de ambas especies y se analizó la concentración de trehalosa durante la fase estacionaria temprana mediante un método enzimático. Los resultados mostraron que el medio 9K modificado con hierro ferroso a 28 °C tuvo la mayor producción de trehalosa, con A. ferrivorans CF27 con una mayor producción de 0.34 µmol/mg de proteína en comparación con A. ferrooxidans ATCC 23270 a 0.31 µmol/mg de proteína. Al utilizar CuS, la producción de trehalosa fue menor, con 0.02 y 0.03 µmol/mg de proteína para A. ferrivorans CF27 y A. ferrooxidans ATCC 23270, respectivamente, mientras que en presencia de zinc no se detectó trehalosa. A 15°C, el método enzimático no detectó trehalosa en los tres medios de cultivo, lo que indicaria que este carbohidrato no protege contra las bajas temperaturas en ninguna de las especies.
Descargas
Metrics
Métricas
Citas
Amaro AM, Chamorro D, Seeger M, Arredondo R, Peirano I, Jerez CA. 1991. Effect of external pH perturbations on in vivo protein synthesis by the acidophilic bacterium Thiobacillus ferrooxidans. J Bacteriol. 173(2):910–915.
Arredondo R, García A, Jerez CA. 1994. Partial Removal of Lipopolysaccharide from Thiobacillus ferrooxidans Affects Its Adhesion to Solids. Applied and Environmental Microbiology. 60(8):2846–2851. https://doi.org/10.1128/aem.60.8.2846-2851.1994
Avonce N, Mendoza-Vargas A, Morett E, Iturriaga G. 2006. Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology. 6(1):109. https://doi.org/10.1186/1471-2148-6-109
Bao H. 2019. Analysis on Key Problems of Winter Operation in Alpine-cold Open-pit Mine. IOP Conf Ser: Earth Environ Sci. 384(1):012073. https://doi.org/10.1088/1755-1315/384/1/012073
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72(1):248–254. https://doi.org/10.1016/0003-2697(76)90527-3
Ccorahua-Santo R, Eca A, Abanto M, Guerra G, Ramírez P. 2017. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature. Res Microbiol. 168(5):482–492. https://doi.org/10.1016/J.RESMIC.2017.01.007
Chiu P-L, Kelly DF, Walz T. 2011. The use of trehalose in the preparation of specimens for molecular electron microscopy. Micron. 42(8):762–772. https://doi.org/10.1016/j.micron.2011.06.005
Crowe JH, Crowe LM, Oliver AE, Tsvetkova N, Wolkers W, Tablin F. 2001. The Trehalose Myth Revisited: Introduction to a Symposium on Stabilization of Cells in the Dry State. Cryobiology. 43(2):89–105. https://doi.org/10.1006/cryo.2001.2353
Elbein AD, Pan YT, Pastuszak I, Carroll D. 2003. New insights on trehalose: a multifunctional molecule. Glycobiology. 13(4):17R-27R. https://doi.org/10.1093/glycob/cwg047
Escobar B, Buccicardi S, Morales G, Wiertz JV. 2009. Bacterial Oxidation of Ferrous Iron and RISCs at Low Temperatures: Their Effect on Acid Mine Drainage and Bioleaching of Sulphide Minerals. Advanced Materials Research. 71–73:433–436. https://doi.org/10.4028/www.scientific.net/AMR.71-73.433
Galleguillos PA, Grail BM, Hallberg KB, Demergasso CS, Johnson DB. 2018. Identification of trehalose as a compatible solute in different species of acidophilic bacteria. J Microbiol. 56(10):727–733. https://doi.org/10.1007/s12275-018-8176-2
Guerra-Bieberach G, Ccorahua-Santo R, Eca A, Bernaldo J, Sánchez T, Rojas-Ayala C, Ramirez P. 2017. Expression of Candidate Cold Stress and Metabolic Related Genes in Acidithiobacillus ferrivorans PQ33 Strain Using Ferrous Iron as Electron Donor. Solid State Phenomena. 262:368–371. https://doi.org/10.4028/www.scientific.net/SSP.262.368
Guiliani N, Jerez CA. 2000. Molecular Cloning, Sequencing, and Expression ofomp-40, the Gene Coding for the Major Outer Membrane Protein from the Acidophilic Bacterium Thiobacillus ferrooxidans. Applied and Environmental Microbiology. 66(6):2318–2324. https://doi.org/10.1128/AEM.66.6.2318-2324.2000
Hallberg KB, González-Toril E, Johnson DB. 2010. Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles. 14(1):9–19. https://doi.org/10.1007/s00792-009-0282-y
Hayner GA, Khetan S, Paulick MG. 2017. Quantification of the Disaccharide Trehalose from Biological Samples: A Comparison of Analytical Methods. ACS Omega. 2(9):5813–5823. https://doi.org/10.1021/acsomega.7b01158
Jain NK, Roy I. 2009. Effect of trehalose on protein structure. Protein Science. 18(1):24–36. https://doi.org/10.1002/pro.3
Jain NK, Roy I. 2010. Trehalose and Protein Stability. Current Protocols in Protein Science. 59(1):4.9.1-4.9.12. https://doi.org/10.1002/0471140864.ps0409s59
Kaksonen AH, Deng X, Morris C, Khaleque HN, Zea L, Gumulya Y. 2021. Potential of Acidithiobacillus ferrooxidans to Grow on and Bioleach Metals from Mars and Lunar Regolith Simulants under Simulated Microgravity Conditions. Microorganisms. 9(12):2416. https://doi.org/10.3390/microorganisms9122416
Kandror O, DeLeon A, Goldberg AL. 2002. Trehalose synthesis is induced upon exposure of Escherichia coli to cold and is essential for viability at low temperatures. Proceedings of the National Academy of Sciences. 99(15):9727–9732. https://doi.org/10.1073/pnas.142314099
Kretschmer PM, Bannister AM, O’Brien MK, MacManus-Spencer LA, Paulick MG. 2016. A liquid chromatography tandem mass spectrometry assay for the detection and quantification of trehalose in biological samples. Journal of Chromatography B. 1033–1034:9–16. https://doi.org/10.1016/j.jchromb.2016.08.007
Kruger NJ. 1994. The Bradford Method for Protein Quantitation. In: Walker JM, editor. Basic Protein and Peptide Protocols [Internet]. Totowa, NJ: Humana Press; p. 9–15. https://doi.org/10.1385/0-89603-268-X:9
Liljeqvist M, Ossandon FJ, González C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M. 2015. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiology Ecology. 91(4):fiv011. https://doi.org/10.1093/femsec/fiv011
Mamani S, Moinier D, Denis Y, Soulère L, Queneau Y, Talla E, Bonnefoy V, Guiliani N. 2016. Insights into the Quorum Sensing Regulon of the Acidophilic Acidithiobacillus ferrooxidans Revealed by Transcriptomic in the Presence of an Acyl Homoserine Lactone Superagonist Analog. Frontiers in Microbiology 7. https://www.frontiersin.org/article/10.3389/fmicb.2016.01365
Meruane G, Vargas T. 2003. Bacterial oxidation of ferrous iron by Acidithiobacillus ferrooxidans in the pH range 2.5–7.0. Hydrometallurgy. 71(1):149–158. https://doi.org/10.1016/S0304-386X(03)00151-8
Osorio H, Mettert E, Kiley P, Dopson M, Jedlicki E, Holmes DS. 2019. Identification and Unusual Properties of the Master Regulator FNR in the Extreme Acidophile Acidithiobacillus ferrooxidans. Frontiers in Microbiology 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.01642
Phadtare S. 2004. Recent developments in bacterial cold-shock response. Curr Issues Mol Biol. 6(2):125–136.
Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. 2004. Differential Protein Expression during Growth of Acidithiobacillus ferrooxidans on Ferrous Iron, Sulfur Compounds, or Metal Sulfides. Applied and Environmental Microbiology. 70(8):4491–4498. https://doi.org/10.1128/AEM.70.8.4491-4498.2004
Reina-Bueno M, Argandoña M, Nieto JJ, Hidalgo-García A, Iglesias-Guerra F, Delgado MJ, Vargas C. 2012. Role of trehalose in heat and desiccation tolerance in the soil bacterium Rhizobium etli. BMC Microbiology. 12(1):207. https://doi.org/10.1186/1471-2180-12-207
Reina-Bueno M, Argandoña M, Salvador M, Rodríguez-Moya J, Iglesias-Guerra F, Csonka LN, Nieto JJ, Vargas C. 2012. Role of Trehalose in Salinity and Temperature Tolerance in the Model Halophilic Bacterium Chromohalobacter salexigens. PLOS ONE. 7(3):e33587. https://doi.org/10.1371/journal.pone.0033587
Riley M. 1999. Correlates of smallest sizes for microorganisms. Size Limits Very Small Microorg Proc a Work. 21–25. https://www.ncbi.nlm.nih.gov/books/NBK224751/
Rivera-Araya J, Huynh ND, Kaszuba M, Chávez R, Schlömann M, Levicán G. 2020. Mechanisms of NaCl-tolerance in acidophilic iron-oxidizing bacteria and archaea: Comparative genomic predictions and insights. Hydrometallurgy. 194:105334. https://doi.org/10.1016/j.hydromet.2020.105334
Rivera-Araya J, Pollender A, Huynh D, Schlömann M, Chávez R, Levicán G. 2019. Osmotic Imbalance, Cytoplasm Acidification and Oxidative Stress Induction Support the High Toxicity of Chloride in Acidophilic Bacteria. Frontiers in Microbiology 10. https://www.frontiersin.org/article/10.3389/fmicb.2019.02455
Saavedra A, Aguirre P, Gentina JC. 2020. Biooxidation of Iron by Acidithiobacillus ferrooxidans in the Presence of D-Galactose: Understanding Its Influence on the Production of EPS and Cell Tolerance to High Concentrations of Iron. Frontiers in Microbiology 11. https://www.frontiersin.org/article/10.3389/fmicb.2020.00759
Sakaguchi M. 2020. Diverse and common features of trehalases and their contributions to microbial trehalose metabolism. Appl Microbiol Biotechnol. 104(5):1837–1847. https://doi.org/10.1007/s00253-019-10339-7
Sampedro JG, Uribe S. 2004. Trehalose-enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity. Mol Cell Biochem. 256(1):319–327. https://doi.org/10.1023/B:MCBI.0000009878.21929.eb
Schlichter J, Friedrich J, Herenyi L, Fidy J. 2001. Trehalose Effect on Low Temperature Protein Dynamics: Fluctuation and Relaxation Phenomena. Biophysical Journal. 80(4):2011–2017. https://doi.org/10.1016/S0006-3495(01)76171-1
Talla E, Hedrich S, Ji BY, Johnson DB, Bonnefoy V. 2013. Genome Analysis of the Psychrotolerant Acidophile Acidithiobacillus ferrivorans CF27. Advanced Materials Research. 825:145–148. https://doi.org/10.4028/www.scientific.net/AMR.825.145
Tran TTT, Mangenot S, Magdelenat G, Payen E, Rouy Z, Belahbib H, Grail BM, Johnson DB, Bonnefoy V, Talla E. 2017. Comparative Genome Analysis Provides Insights into Both the Lifestyle of Acidithiobacillus ferrivorans Strain CF27 and the Chimeric Nature of the Iron-Oxidizing Acidithiobacilli Genomes. Frontiers in Microbiology 8. https://www.frontiersin.org/article/10.3389/fmicb.2017.01009
Ueoka N, Kouzuma A, Watanabe K. 2016. Missing Iron-Oxidizing Acidophiles Highly Sensitive to Organic Compounds. Microbes Environ. 31(3):244. https://doi.org/10.1264/JSME2.ME16086
Vanaporn M, Titball RW. 2020. Trehalose and bacterial virulence. Virulence. 11(1):1192–1202. https://doi.org/10.1080/21505594.2020.1809326
Zhang Y, Zhang S, Zhao D, Ni Y, Wang W, Yan L. 2020. Complete Genome Sequence of Acidithiobacillus ferrooxidans YNTRS-40, a Strain of the Ferrous Iron- and Sulfur-Oxidizing Acidophile. Microorganisms. 8(1):2. https://doi.org/10.3390/microorganisms8010002
Zhou Q, Gao J, Li Y, Zhu S, He L, Nie W, Zhang R. 2017. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation. Water Science and Technology. 76(6):1347–1359. https://doi.org/10.2166/wst.2017.244
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Maria Castañeda, Marcos Sulca, Pablo Ramirez

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
LOS AUTORES RETIENEN SUS DERECHOS:
a. Los autores retienen sus derechos de marca y patente, y también sobre cualquier proceso o procedimiento descrito en el artículo.
b. Los autores retienen el derecho de compartir, copiar, distribuir, ejecutar y comunicar públicamente el artículo publicado en la Revista Peruana de Biología (por ejemplo, colocarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en la Revista Peruana de Biología.
c. Los autores retienen el derecho a hacer una posterior publicación de su trabajo, de utilizar el artículo o cualquier parte de aquel (por ejemplo: una compilación de sus trabajos, notas para conferencias, tesis, o para un libro), siempre que indiquen su publicación inicial en la Revista Peruana de Biología (autores del trabajo, revista, volumen, número y fecha).