Parámetros hemocitarios y química de la hemolinfa en reproductores de la concha prieta Anadara tuberculosa (Arcoida: Arcidae)

Autores/as

  • Karen Espinoza Programa de Maestría en Acuicultura, Instituto de Postgrado, Universidad Técnica de Manabí, Bahía de Caráquez, Manabí, Ecuador. https://orcid.org/0000-0003-1024-5311
  • Edgar Zapata Vívenes Grupo de Investigación, Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Ecuador. https://orcid.org/0000-0003-3720-5416
  • César Lodeiros Grupo de Investigación, Biología y Cultivo de Moluscos, Departamento de Acuicultura, Pesca y Recursos Naturales Renovables, Facultad de Ciencias Veterinarias, Universidad Técnica de Manabí, Ecuador. https://orcid.org/0000-0001-9598-2235

DOI:

https://doi.org/10.15381/rpb.v29i4.23624

Palabras clave:

Eritrocito, granulocito, hemolinfa, hemoglobina, hialinocito

Resumen

Con motivo de conocer el estado de salud de poblaciones silvestres de la concha prieta Anadara tuberculosa se estudiaron los parámetros hemocitarios (viabilidad, conteo total y diferencial, estabilidad lisosomal, fragilidad osmótica) y la química sanguínea (hemoglobina-Hb, proteínas, triglicéridos, glucosa, lactato deshidrogenasa-LDH y catalasa-CAT). Se extrajo hemolinfa en reproductores salvajes aparentemente sanos colectados en la isla Corazón, río Chone, Ecuador. La viabilidad celular fue elevada, con presencia de 5 morfotipos: eritrocitos (74%), granulocitos traslucidos (6%), amebocitos (3%), hialinocitos (12%), blastocitos (5%). Los hemocitos presentaron membranas lisosomales estables al rojo neutro durante 240 min y una fragilidad osmótica media (FO50) de 4.8‰. Las concentraciones de Hb, proteínas, lípidos y glucosa denotan la función respiratoria y reservas energéticas durante los cambios de marea. La actividad de LDH está vinculada al metabolismo anaeróbico y CAT a la capacidad de mantener el equilibrio redox del sistema inmunitario. Los parámetros hemocitarios y química de la hemolinfa pueden servir como índices fisiológicos normales de referencia en reproductores de A. tuberculosa.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Aebi H. 1984. [13] Catalase in vitro. In: Methods in Enzymology. Vol. 105; p. 121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

Allam B, Raftos D. 2015. Immune responses to infectious diseases in bivalves. Journal of Invertebrate Pathology. 131:121–136. https://doi.org/10.1016/j.jip.2015.05.005

Bao Y, Wang Q, Lin Z. 2011. Hemoglobin of the bloody clam Tegillarca granosa (Tg-HbI) is involved in the immune response against bacterial infection. Fish & Shellfish Immunology. 31(4):517–523. https://doi.org/10.1016/j.fsi.2011.05.029

Bao YB, Wang Q, Guo XM, Lin ZH. 2013. Structure and immune expression analysis of hemoglobin genes from the blood clam Tegillarca granosa. Genetics and Molecular Research 12(AOP). https://doi.org/10.4238/2013.february.28.5

Beutler E. 1990. Osmotic Fragility. En: Williams JW, Beutler E, Erslev AJ, et al. 1990. (Eds). Hematology. 4th edition, pp. 1726-1728. New York: McGraw Hill Publishing Co.

Bucolo G, David H. 1973. Quantitative Determination of Serum Triglycerides by the Use of Enzymes. Clinical Chemistry. 19(5):476–482. https://doi.org/10.1093/clinchem/19.5.476

Castellanos-Galindo GA, Cantera JR, Espinosa S, Mejía-Ladino LM. 2011. Use of local ecological knowledge, scientist’s observations and grey literature to assess marine species at risk in a tropical eastern Pacific estuary. Aquatic Conservation: Marine and Freshwater Ecosystems. 21(1):37–48. https://doi.org/10.1002/aqc.1163

Chan FK-M, Moriwaki K, De Rosa MJ. 2013. Detection of Necrosis by Release of Lactate Dehydrogenase Activity. In: Snow AL, Lenardo MJ, editors. Immune Homeostasis: Methods and Protocols. Totowa, NJ: Humana Press; p. 65–70. https://doi.org/10.1007/978-1-62703-290-2_7

Cheng TC. 1996. Hemocytes: Forms and Functions. In: Kennedy VS, Newell RIE, Eble AF, (Eds). The Eastern Oyster: Crassostrea virginica. p. 772. College Park, MD: Maryland Sea Grant Book.

Daci JV, Lewis SM. 1996. Practical Hematology. 7th Edition, pp. 196-200. London: Charchill and Livingston.

Dang C, Cribb TH, Osborne G, Kawasaki M, Bedin A-S, Barnes AC. 2013. Effect of a hemiuroid trematode on the hemocyte immune parameters of the cockle Anadara trapezia. Fish & Shellfish Immunology. 35(3):951–956. https://doi.org/10.1016/j.fsi.2013.07.010

Davies IM, Gubbins M, Hylland K, Maes T, Martínez-Gómez C, Giltrap M, Burgeot T, Wosniok W, Lang T, Vethaak AD. 2012. Technical annex: assessment criteria for biological effects measurements, 209-212. En: Davies IM, Vethaak AD (Eds). Integrated monitoring of chemicals and their effects. 277 pp. ICES Cooperative Research Report No. 315

de la Ballina NR, Maresca F, Cao A, Villalba A. 2022. Bivalve Haemocyte Subpopulations: A Review. Frontiers in Immunology 13. https://www.frontiersin.org/articles/10.3389/fimmu.2022.826255

Donaghy L, Volety AK. 2011. Functional and metabolic characterization of hemocytes of the green mussel, Perna viridis: in vitro impacts of temperature. Fish & Shellfish Immunology. 31(6):808–814. https://doi.org/10.1016/j.fsi.2011.07.018

Donaghy L, Hong H-K, Jauzein C, Choi K-S. 2015. The known and unknown sources of reactive oxygen and nitrogen species in haemocytes of marine bivalve molluscs. Fish & Shellfish Immunology. 42(1):91–97. https://doi.org/10.1016/j.fsi.2014.10.030

Farhana A, Lappin SL. Biochemistry, Lactate Dehydrogenase. (Updated 2022 May 8). In: StatPearls (Internet). Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557536/

Freire CA, Welker AF, Storey JM, Storey KB, Hermes-Lima M. 2011. Oxidative Stress in Estuarine and Intertidal Environments (Temperate and Tropical). In: Abele D, Vázquez-Medina JP, Zenteno-Savín T, editors. Oxidative Stress in Aquatic Ecosystems. West Sussex: John Wiley & Sons, Ltd; p. 41–57. https://doi.org/10.1002/9781444345988.ch3

Fernández-Arias, H.T., Miranda Ávila, Y E., Uria Galicia. 1988. Estudio descriptivo de la hemolinfa de Anadara (Anadara) tuberculosa Sowerby, 1833. (Mollusca: Peleclpoda: Arcidae). I Componentes y características generales del plasma. Anales de la Escuela Nacional de Ciencias Biológicas, México, 32: 63-73.

Gabriel UU, Akinrotimi OA, Orlu EE. 2011. Haematological characteristics of the Bloody cockle anadara senilis (L.) from Andoni flats, Niger Delta, Nigeria. Science World Journal. 6(1):1–4. https://doi.org/10.4314/swj.v6i1.70305

Gornall, Ag., Bardawill, Cj., David, Mm. 1949. Determination of serum proteins by means of the Biuret reaction. Journal of Biological Chemistry 177(2):751-66. https://doi.org/10.1016/S0021-9258(18)57021-6

Haider F, Timm S, Bruhns T, Noor MN, Sokolova IM. 2020. Effects of prolonged food limitation on energy metabolism and burrowing activity of an infaunal marine bivalve, Mya arenaria. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 250:110780. https://doi.org/10.1016/j.cbpa.2020.110780

Hameed A, Muhammad F, Muhammad AA, Shafi M, Sultana R. 2018. Morphological and structural characterization of blood cells of Anadara antiquata. Iranian Journal of Fisheries Sciences 17:613-9.

Hine PM. 1999. The inter-relationships of bivalve haemocytes. Fish & Shellfish Immunology. 9(5):367–385. https://doi.org/10.1006/fsim.1998.0205

Holden JA, Pipe RK, Quaglia A, Ciani G. 1994. Blood cells of the arcid clam, Scapharca inaequivalvis. Journal of the Marine Biological Association of the United Kingdom. 74(2):287–299. https://doi.org/10.1017/S0025315400039333

Kamiloglu S, Sari G, Ozdal T, Capanoglu E. 2020. Guidelines for cell viability assays. Food Frontiers. 1(3):332–349. https://doi.org/10.1002/fft2.44

Kampen EJ van, Zijlstra WG. 1966. Determination of Hemoglobin and Its Derivatives. In: Sobotka H, Stewart CP, editors. Advances in Clinical Chemistry. Vol. 8.; p. 141–187. https://doi.org/10.1016/S0065-2423(08)60414-X

Kladchenko ES, Andreyeva AYu, Kukhareva TA, Soldatov AA. 2020a. Morphologic, cytometric and functional characterisation of Anadara kagoshimensis hemocytes. Fish & Shellfish Immunology. 98:1030–1032. https://doi.org/10.1016/j.fsi.2019.11.061

Kladchenko ES, Andreyeva AY, Kukhareva TA, Rychkova VN, Soldatov AA. 2020b. Impact of 24-hour hypoxia on hemocyte functions of Anadara kagoshimensis (Tokunaga, 1906). Marine Biological Journal. 5(4):28–36. https://doi.org/10.21072/mbj.2020.05.4.03

Kladchenko ES, Andreyeva AY, Mindukshev IV, Gambaryan S. 2022. Cellular osmoregulation of the ark clam (Anadara kagoshimensis) hemocytes to hyposmotic media. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology. 337(5):434–439. https://doi.org/10.1002/jez.2578

Kim J-H, Lee H-M, Cho Y-G, Shin J-S, You J-W, Choi K-S, Hong H-K. 2020. Flow cytometric characterization of the hemocytes of blood cockles Anadara broughtonii (Schrenck, 1867), Anadara kagoshimensis (Lischke, 1869), and Tegillarca granosa (Linnaeus, 1758) as a biomarker for coastal environmental monitoring. Marine Pollution Bulletin. 160:111654. https://doi.org/10.1016/j.marpolbul.2020.111654

Kim J-H, Lee H-M, Cho Y-G, Shin J-S, Yoo J-W, Hong H-K, Choi K-S. 2022. Effects of spawning stress on the immune capacity of blood cockle Tegillarca granosa occurring on the south coast of Korea. Fish & Shellfish Immunology. 120:15–22. https://doi.org/10.1016/j.fsi.2021.11.013

Livingstone DR, Stickle WB, Kapper MA, Wang S, Zurburg W. 1990. Further studies on the phylogenetic distribution of pyruvate oxidoreductase activities. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry. 97(4):661–666. https://doi.org/10.1016/0305-0491(90)90104-2

Louis KS, Siegel AC. 2011. Cell Viability Analysis Using Trypan Blue: Manual and Automated Methods. In: Stoddart MJ, editor. Mammalian Cell Viability: Methods and Protocols. Totowa, NJ: Humana Press; p. 7–12. https://doi.org/10.1007/978-1-61779-108-6_2

Lucero C, Cantera J, Neira R. 2012. Pesquería y crecimiento de la piangua (Arcoida: Arcidae) Anadara tuberculosa en la Bahía de Málaga del Pacífico colombiano, 2005-2007. Revista de Biología Tropical. 60(1). https://doi.org/10.15517/rbt.v60i1.2754

Loján Avellán MC, Zapata Vívenes E, Lodeiros Seijo C, Treviño LM. 2021. Biomarcadores celulares e inmunológicos en la ostra del Pacífico Crassostrea gigas (Thunberg, 1793) cultivada en un estuario tropical durante la temporada lluviosa. La Técnica: Revista de las Agrociencias, edición especial (julio):52–68. https://doi.org/10.33936/la_tecnica.v0i0.3065

Lowe DM, Pipe RK. 1994. Contaminant induced lysosomal membrane damage in marine mussel digestive cells: an in vitro study. Aquatic Toxicology. 30(4):357–365. https://doi.org/10.1016/0166-445X(94)00045-X

Mangum ChP. 1992. Respiratory Function of the Red Blood Cell Hemoglobins of Six Animal Phyla. In: Mangum Charlotte P., editor. Blood and Tissue Oxygen Carriers. Berlin, Heidelberg: Springer; p. 117–149. https://doi.org/10.1007/978-3-642-76418-9_5

Martínez-Gómez C, Bignell J, Lowe D. (Eds). 2015. Lysosomal membrane stability in mussels. ICES Techniques in Marine Environmental Science, 56. pp. https://doi.org/10.17895/ices.pub.5084

Matozzo V, Marin MG. 2010. First evidence of gender-related differences in immune parameters of the clam Ruditapes philippinarum (Mollusca, Bivalvia). Marine Biology 157(6):1181–1189. https://doi.org/10.1007/s00227-010-1398-4

Mendoza O, Pretell K, Diringer B, Avellan R, Zapata K, Marchan A, Cedeño V, Peralta T, Ordinola A, Mialhe E. 2017. Respuesta fisiológica y molecular de Anadara tuberculosa (Arcoida: Arcidae) al estrés de salinidad. Revista de Biología Tropical. 65(3):1142–1151. https://doi.org/10.15517/rbt.v65i3.29448

Mora E, Jurado J, Flores VY. 2010. La pesquería de la concha prieta (Anadara tuberculosa y Anadara similis) en el 2009: indicadores pesqueros y condición reproductiva en la zona sur y norte de Ecuador. Boletín Científico-Técnico, 20(8), 35-49.

Nabi N, Ahmed I, Wani GB. 2022. Hematological and serum biochemical reference intervals of rainbow trout, Oncorhynchus mykiss cultured in Himalayan aquaculture: Morphology, morphometrics and quantification of peripheral blood cells. Saudi Journal of Biological Sciences. 29(4):2942–2957. https://doi.org/10.1016/j.sjbs.2022.01.019

Nieves M, Román JC, Piña P, Medina A, Leal S, Miranda A, Muñoz G. 2009. Balance energético de Anadara tuberculosa (SOWERBY, 1833) a diferentes temperaturas. Revista de Investigaciones Marinas, 30: 135-144.

Orbach A, Zelig O, Yedgar S, Barshtein G. 2017. Biophysical and Biochemical Markers of Red Blood Cell Fragility. Transfusion Medicine and Hemotherapy-TMH. 44(3):183–187. https://doi.org/10.1159/000452106

Panta-Vélez, R.P., Bermúdez-Medranda, A., Mero, P., Arrieche, D., Acosta-Balbás, V. 2020. Reproductive Cycle of Anadara tuberculosa (Sowerby, 1833) (Bivalvia: Arcidae) in a mangrove system of the Chone River Estuary, Ecuador. Adv. Environ. Biol. 14(2): 1-11. https://doi.org/10.22587/aeb.2020.14.2.

Rodríguez-Monroy C, Prado-Carpio E, Martínez-Soto M, Morris-Díaz A. 2020. Agribusiness Management Characterization and Performance of the Value Chain in the Production of the “Concha Prieta.” Proceedings in Food System Dynamics (0):63–83. https://doi.org/10.18461/pfsd.2020.2007

Quiñónez-Cabeza MR, Nazareno-Veliz IT, Camacho-Marín RA, y Cedeño-Coveña MV. 2020. Proceso de comercialización y extracción de productos de manglar, San Lorenzo-Ecuador. Revista Venezolana de Gerencia 25(91), 885-899. https://doi.org/10.37960/rvg.v25i91.33172

Reshma KJ, Sumithra TG, Vishnu B, Jyothi R, Ratheesh Kumar R, Pootholathil S, Sanil NK. 2020. Indexing serum biochemical attributes of Lutjanus argentimaculatus (Forsskal, 1775) to instrument in health assessment. Aquaculture Research. 51(6):2590–2602. https://doi.org/10.1111/are.14601

Soldatov AA, Gostyukhina OL, Borodina AV, Golovina IV. 2013. Qualitative composition of carotenoids, catalase and superoxide dismutase activities in tissues of the bivalve mollusc Anadara inaequivalvis (Bruguiere, 1789). Journal of Evolutionary Biochemistry and Physiology. 49(4):389–398. https://doi.org/10.1134/S0022093013040026

Soudant P, Paillard C, Choquet G, Lambert C, Reid HI, Marhic A, Donaghy L, Birkbeck TH. 2004. Impact of season and rearing site on the physiological and immunological parameters of the Manila clam Venerupis (=Tapes, =Ruditapes) philippinarum. Aquaculture. 229(1):401–418. https://doi.org/10.1016/S0044-8486(03)00352-1

Suganthi, K., Bragadeeswaran, S., Prabhu, K., Rani, S.S. 2009. In Vitro Assessment of haemocyte and thrombocyte count from the blood clam of Anadara inequivalvis. Middle-East Journal of Scientific Research (MEJSR) 4:163-7.

Trinder P. 1969. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. Journal of Clinical Pathology. 22(2):158–161. https://doi.org/10.1136/jcp.22.2.158

Tritschler C, Mizukami K, Raj K, Giger U. 2016. Increased erythrocytic osmotic fragility in anemic domestic shorthair and purebred cats. Journal of Feline Medicine and Surgery. 18(6):462–470. https://doi.org/10.1177/1098612X15587574

Uria-Galicia, E., Fernández Arias H. Miranda Avila, Y T. 1988. Estudio descriptivo de la hemolinfa de Anadara (Anadara) tuberculosa Sowerby, 1833. (Mollusca: Pelecipoda: Arcidae). Cuantificación de la hemoglobina celular y plasmática. Anales de la Escuela Nacional de Ciencias Biológicas, México32: 75-81.

Vega ÁJ, P YAR, Alvarado O, Mitre CC. 2021. Estructura de tallas, distribución y abundancia de Anadara tuberculosa (Bivalvia: Arcidae) en dos sistemas de manglar del Pacífico de Panamá. Revista de Biología Tropical. 69(2):422–433. https://doi.org/10.15517/rbt.v69i2.43934

Viceministerio de Acuacultura y Pesca de Ecuador (VMAPE). 2021. Plan de acción provincial para el manejo y la conservación de la concha prieta (Anadara similis y A. tuberculosa) en El Oro, Ecuador. Proyecto Iniciativa Pesquerías Costeras. Manta, Ecuador: Programa de las Naciones Unidas para el Desarrollo y Conservación Internacional Ecuador.

Wang Y, Zheng Y, Dong J, Zhang X. 2021. Two-sided effects of prolonged hypoxia and sulfide exposure on juvenile ark shells (Anadara broughtonii). Marine Environmental Research. 169:105326. https://doi.org/10.1016/j.marenvres.2021.105326

Yin X, Chen P, Chen H, Jin W, Yan X. 2017. Physiological performance of the intertidal Manila clam (Ruditapes philippinarum) to long-term daily rhythms of air exposure. Sci Rep. 7(1):41648. https://doi.org/10.1038/srep41648

Zapata-Vívenes E, Astudillo LR de, Sánchez G, Barreto M. 2012. Heavy metals and related biomarkers in Perna viridis (Bivalvia: Mytilidae) collected on the coast of Sucre State, Venezuela. Ciencias Marinas. 38(3):517–528. https://doi.org/10.7773/cm.v38i3.2046

Zapata Vívenes E, Sánchez G, Nusetti O, Marcano L del V. 2022. Modulation of innate immune responses in the flame scallop Ctenoides scaber (Born, 1778) caused by exposure to used automobile crankcase oils. Fish & Shellfish Immunology. 130:342–349. https://doi.org/10.1016/j.fsi.2022.09.020

Zhou L, Yang A, Wang Q, Liu Z, Wu B, Tian J, et al. 2013. Studies on the hemocytes types and their immunological functions in bloody clam (Scapharca broughtonii). Journal of Fisheries of China 37:599-606. https://doi.org/10.3724/SP.J.1231.2013.38321

Descargas

Publicado

15.11.2022

Número

Sección

Notas científicas

Cómo citar

Espinoza, Karen, Edgar Zapata Vívenes, and César Lodeiros. 2022. “Parámetros Hemocitarios Y química De La Hemolinfa En Reproductores De La Concha Prieta Anadara Tuberculosa (Arcoida: Arcidae)”. Revista Peruana De Biología 29 (4): e23624. https://doi.org/10.15381/rpb.v29i4.23624.