Bioinformatic identification of Single Nucleotide Polymorphisms (SNPs) in keratin-associated protein genes in alpacas (Vicugna pacos)

Authors

DOI:

https://doi.org/10.15381/rpb.v31i1.24889

Keywords:

Alpaca, single nucleotide polymorphism, KRTAP

Abstract

This study aimed to identify single nucleotide polymorphisms (SNPs) in keratin-associated protein genes (KRTAPs), in alpacas (Vicugna pacos). The study was conducted on 34 KRTAPs genes that are annotated in the National Center for Biotechnology Information (NCBI) database.  The reference genome VicPac3.1, nine genomes (NCBI) and reads from 300 alpaca reduce representation DNA libraries were used to compare KRTAPs sequences to identify SNPs, using BLASTN. The minor allele frequency (MAF) and the genotyping rate were calculated using KGD and PLINK software. The Illumina Score was calculated with the Illumina Design Studio software for each SNP. Markers with minor allele frequency ≥0.05, a genotyping rate > 45% per SNP based on read sequences and an Illumina Score ≥ 0.6 were selected. Sixty-seven SNPs identified in intron, exon and/or untranslated regions of the keratin-associated protein genes met these parameters. Of these, 35 SNPs were included in the 76K alpaca SNP microarray and 32 SNPs were confirmed in a population of 936 alpacas.

Downloads

Download data is not yet available.

References

Bai L, Gong H, Zhou H, Tao J, Hickford JGH. 2018. A nucleotide substitution in the ovine KAP20-2 gene leads to a premature stop codon that affects wool fibre curvature. Animal Genetics, 49(4), 357–358. https://doi.org/10.1111/age.12668

Calderon M, More MJ, Gutierrez GA, Ponce de León FA. 2021. Development of a 76k Alpaca (Vicugna pacos) Single Nucleotide Polymorphisms (SNPs) Microarray. Genes, 12(2): 291. https://doi.org/10.3390/genes12020291

Chang C, Chow C, Tellier L, Vattikuti S, Purcell S, Lee J. 2015. Second-generation PLINK: rising to the challenge of larger and richer datasets (en línea). GigaScience 4(1):7. https://doi.org/10.1186/s13742-015-0047-8.

Fang Y, Liu W, Zhang F, Shao Y, Yu S. 2010. The polymorphism of a novel mutation of KAP13.1 gene and its associations with cashmere traits on Xinjiang local goat breed in China. Asian Journal of Animal and Veterinary Advances 5(1): 34-42. http://dx.doi.org/10.3923/ajava.2010.34.42

Fernández A, Gutiérrez G, Ponce de León FA. 2019. Identificación bioinformática de Polimorfismos de Nucleótido Simple (PNSs) en genes candidatos para las características de la fibra en alpacas (Vicugna pacos). Revista Peruana de Biología 26(1): 87-94. http://dx.doi.org/10.15381/rpb.v26i1.15911

Foppiano F. 2016. Caracterización de marcadores genéticos en genes que codifican a proteínas asociadas a queratina y evaluación de la asociación del gen KRTAP11-1 al diámetro de fibra en alpaca (Vicugna pacos) siguiendo una aproximación de gen candidato. Tesis Magister en Bioquímica y Biología Molecular. Universidad Peruana Cayetano Heredia, Lima, Perú.

Gillespie JM. 1972. Proteins rich in glycine and tyrosine from keratins. Comparative biochemistry and physiology. Comparative Biochemistry, 41(4):723–34.

Gillespie JM, Broad A. 1972. Ultra-high-sulphur proteins in the hairs of the artiodactyla. Australian journal of biological sciences, 25(1): 138–45.

Gong H, Zhou H, Mckenzie G, Yu Z, Clerens S, Dyer J, Plowman J, Wright M, Arora R, Bawden C, Chen Y, Li J, Hickford J. 2012. An updated nomenclature for keratin-associated proteins (KAPs). International Journal of Biological Sciences 8 (2), 258-264. http://dx.doi.org/10.7150/ijbs.3278

Gutiérrez G. 2008. Revisión de la estimación de los parámetros genéticos en alpacas. En: E. Quispe, J. Mueller, J. Ruíz, L. Alfonso, G. Gutiérrez, eds. Actualidades sobre adaptación, producción, reproducción y mejora genética en Camélidos. Huancavelica, Perú: Universidad Nacional de Huancavelica. Pp.124.

Jin M, Wang L, Li S, Xing M, Zhang X. 2011. Characterization and expression analysis of KAP7.1, KAP8.2 gene in Liaoning new-breeding Cashmere goat hair follicle. Molecular Biology Reports 38: 3023-3028. http://dx.doi.org/10.1007/s11033-010-9968-6

Jones M, Sergeant C, Richardson M, Groth D, Brooks S. & Munyard K. 2019. A non‐synonymous SNP in exon 3 of the KIT gene is responsible for the classic grey phenotype in alpacas (Vicugna pacos). Animal Genetics 50: 493-500. http://dx.doi.org/10.1111/age.12814

Laurie C, Doheny K, Mirel D, Pugh E, Bierut L, Bhangale T, Boehm F, Caporaso N, Cornelis M, Edenberg H, Gabriel S, Harris E, Hu F, Jacobs K, Kraft P, Landi M, Lumley T, Manolio T, McHugh C, Painter I, Paschall J, Rice J, Rice K, Zheng X, Weir B, GENEVA Investigators. 2010. Quality control and quality assurance in genotypic data for genome-wide association studies. Genet Epidemiol., 34(6):591-602. https://doi.org/10.1002/gepi.20516.

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 26. https://doi.org/10.1093/bioinformatics/btp698

Li S, Zhou H, Gong H, Zhao F, Hu J, Luo Y, Hickford JGH. 2017. Identification of the ovine keratin-associated protein 26-1 gene and its association with variation in wool traits. Genes, 8(9). https://doi.org/10.3390/genes8090225

Li S, Zhou H, Gong H, Zhao F, Wang J, Liu X, Hu J, Luo Y, Hickford JGH. 2019. Identification of the ovine keratin-associated protein 21-1 gene and its association with variation in wool traits. Animals, 9(7). https://doi.org/10.3390/ani9070450

Liu H, Yue C, Zhang W, Zhu X, Yang G, Jia Z. 2011. Association of the KAP 8.1 Gene Polymorphisms with Fibre Traits in Inner Mongolian Cashmere Goats. Asian-Australasian Journal of Animal Sciences 24(10):1341-1347. http://dx.doi.org/10.5713/ajas.2011.11120

Liu Y, Shi G, Wang H, Wan P, Tang H, Yang H & Guan F. 2014. Polymorphisms of KAP6, KAP7 and KAP8 genes in four Chinese sheep breeds. Genetic and Molecular Research 13: 3438–45. http://dx.doi.org/10.4238/2014.April.30.5

Pallotti S, Picciolini M, Antonini M, Renieri C, Napolioni V. 2023 Genome-wide scan for runs of homozygosity in South American Camelids. BMC Genomics 24, 470. https://doi.org/10.1186/s12864-023-09547-3

Pierce B. 2006. Genética: Un enfoque conceptual. Editorial Panamericana. 915 pp.

Powell BC, Rogers GE. 1997. The role of keratin proteins and their genes in the growth, structure and properties of hair. Exs 78: 59-148. http://dx.doi.org/10.1007/978-3-0348-9223-0_3

Salas W. 2019. Caracterización de marcadores moleculares de genes involucrados en la estructura y desarrollo de la fibra de alpaca y su potencial asociación con el diámetro de la fibra. Tesis para optar el Grado Académico de Doctor en Ciencias Biológicas. Universidad Nacional Mayor de San Marcos, Lima, Perú.

Wang J, Zhou H, Luo Y, Zhao M, Gong H, Hao Z, Hu J, Hickford J. 2019. Variation in the Caprine KAP24-1 Gene Affects Cashmere Fibre Diameter. Animals 9(1): 15. http://dx.doi.org/10.3390/ani9010015

Wang X, Zhao Z, Xu H, Qu L, Zhao H, Li T, Zhang Z. 2012. Variation and expression of KAP9. 2 gene affecting cashmere trait in goats. Molecular biology reports 39(12), 10525-10529.

Wang X, Xu H, Li T, Qu L, Zhao Z, Zhang Z. 2014. Expression analysis of KAP9.2 and Hoxc13 genes during different cashmere growth stages by qRT-PCR method. Molecular biology reports 41(9). http://dx.doi.org/10.1007/s11033-014-3435-8.

Yu H, Wang X, Chen H, Wang M, Zhao M, Lan X, Lei C, Wang K, Lai X, Wang X. 2008. The polymorphism of a novel 30bp-deletion mutation at KAP9.2 locus in the Cashmere goat. Small Ruminant Research 80(1): 111-115. http://dx.doi.org/10.1016/j.smallrumres.2008.09.010

Downloads

Published

03/15/2024

Issue

Section

Articles

How to Cite

Figueroa, Deyanira, Manuel More, Gustavo Gutiérrez, and F. Abel Ponce de León. 2024. “Bioinformatic Identification of Single Nucleotide Polymorphisms (SNPs) in Keratin-Associated Protein Genes in Alpacas (Vicugna Pacos)”. Revista Peruana De Biología 31 (1): e24889. https://doi.org/10.15381/rpb.v31i1.24889.