Mechanical scarification increases seed germination of Neltuma alba (Fabaceae), a threatened tree from the Atacama Desert

Authors

  • Ana María Humaña Universidad de Los Lagos, Departamento de Ciencias Biológicas y Biodiversidad, Laboratorio de Vida Silvestre, Av. Fuchslocher 1305, Osorno, Chile. https://orcid.org/0009-0008-0600-9854
  • Carlos E. Valdivia Universidad de Los Lagos, Departamento de Ciencias Biológicas y Biodiversidad, Laboratorio de Vida Silvestre, Av. Fuchslocher 1305, Osorno, Chile. https://orcid.org/0000-0001-7869-598X

DOI:

https://doi.org/10.15381/rpb.v31i2.26571

Keywords:

Seed dispersal, anachronism, seedling recruitment

Abstract

Neltuma alba is a tree whose seeds were probably dispersed by now-extinct animals. Currently, its fruits are consumed by foxes, guanacos, donkeys, and goats, which may scarify the seeds during ingestion, thereby enhancing germination. However, these animals might damage the cotyledons when chewing the fruits, potentially reducing the survival and growth of the plants, although this occurs infrequently. We hypothesize that mechanical scarification of seeds increases their germination but does not affect the survival and growth of the plants. Our objective was to evaluate the effects of mechanical scarification on seed germination and subsequent plant survival. We scarified the seeds by sanding them before sowing them in a nursery with daily watering for six months. Subsequently, the plants were transplanted to the field, where they received daily watering for six months, biweekly watering for the next twelve months, and no watering for the following two years. Seed scarification significantly increased germination by 1.5 times: 58 and 39% germination in scarified and non-scarified seeds, respectively. Scarification did not significantly affect plant survival. Survival rates were 93, 67, 67, and 26% at the end of the first, second, third, and fourth years, respectively. Similarly, scarification did not significantly affect plant height, with plants reaching heights of 28, 59, 74, and 118 cm in the first, second, third, and fourth years, respectively. Understanding the limiting factors for the reproduction of endangered plants in the Atacama Desert is crucial for proposing effective conservation actions.

Downloads

Download data is not yet available.

References

Aguilar DL, Acosta MC, Baranzelli MC, Sércic AN, Delatorre-Herrera J, Verga A, Cosacov A. 2020. Ecophylogeography of the disjunct South American xerophytic tree species Prosopis chilensis (Fabaceae). Biological Journal of the Linnean Society 129 (4): 793-809. https://doi.org/10.1093/biolinnean/blaa006

Baes PP, de Viana, ML, Sühring S. 2002. Germination in Prosopis ferox seeds: effects of mechanical, chemical and biological scarificators. Journal of Arid Environments 50: 185-189. https://doi.org/10.1006/jare.2001.0859

Begon M, Townsend CR, Harper JL. 2006. Ecology, from individuals to ecosystems. Blackwell Publishing, fourth edition.

Bucher EH. 1987. Herbivory in arid and semi-arid regions of Argentina. Revista Chilena de Historia Natural 60: 265-273.

Burkart A. 1976. A monograph of the genus Prosopis (Leguminosae subfam. Mimosoidae). Journal Arnold Arboretum 57: 219–525. https://doi.org/10.5962/p.324722

Campos C, Velez S. 2015. Almacenadores y frugívoros oportunistas: el papel de los mamíferos en la dispersión del algarrobo (Prosopis flexuosa DC) en el desierto del Monte, Argentina. Revista Ecosistemas 24: 28–34. https://doi.org/10.7818/ECOS.2015.24-3.05

Donatti C, Galetti M, Pizo M, Guimarães Jr PR, Jordano P. 2007. Living in the land of ghosts: Fruit traits and the importance of large mammals as seed dispersers in the Pantanal, Brazil. In Dennis AJ, RJ Green, EW Schupp, D Westcott eds. Seed dispersal: theory and its application in a changing world. p. 104–123. CAB International. https://doi.org/10.1079/9781845931650.0104

Fleming TH, Kress WJ. 2013. The ornaments of life. Coevolution and conservation in the tropics. The University of Chicago Press. 588 pp. https://doi.org/10.7208/9780226023328

Galetti M, Moleón M, Jordano P, Pires MM, Guimarães Jr PR, Pape T, Nichols E, Hansen D, Olesen JM, Munk M, de Mattos JS, Schweiger AH, Owen-Smith N, Johnson CN, Marquis RJ, Svenning JC. 2018. Ecological and evolutionary legacy of megafauna extinctions. Biological Reviews 93: 845–862. https://doi.org/10.1111/brv.12374

Guimarães PR, Galetti M, Jordano P. 2008. Seed dispersal anachronisms: Rethinking the fruits extinct megafauna ate. PLoS One 3: e1745. https://doi.org/10.1371/journal.pone.0001745

Gutiérrez JR, Holmgren M, Manrique M, Squeo FA. 2007. Reduced herbivore pressure under rainy ENSO conditions could facilitate dryland reforestation. Journal of Arid Environments 68: 322–330. https://doi.org/10.1016/j.jaridenv.2006.05.011

Hughes CE, Ringelberg JJ, Lewis GP, Catalano SA. 2022. Desintegration the genus Prosopis L. (Leguminosae, Caesalpinioideae, mimosoid clade). PhytoKeys 205, 147. doi: 10.3897/phytokeys.205.75379

Hulme PE, Beckman CW. 2002. Granivory. In Herrera CM, O Pellmyr eds. Plant-Animal Interactions. An Evolutionary Approach. p. 133–154. Blackwell Publishing. UK.

Humaña AM, Jimenez A, Valdivia CE. 2019. Nolana balsamiflua (Gaudich.) Mesa (Solanaceae), un arbusto vulnerable del desierto de Atacama dependiente de polinizadores para producir semillas. Gayana Botánica 76: 123–125. http://dx.doi.org/10.4067/S0717-66432019000100123

Hunziker JH, Naranjo CA, Palacios RA, Poggio L, Saidman BO.1986. Studies on the taxonomy, genetic variation and biochemistry of Argentine species of Prosopis. Forest Ecology and Management 16: 301–315. https://doi.org/10.1016/0378-1127(86)90030-7

IUCN 2024. The IUCN Red List of Threatened Species. Version 2023-1. <https://www.iucnredlist.org>

Janzen DH, Martin PS. 1982. Neotropical anachronisms, the fruits the Gomphoteres ate. Science 215: 19–27. https://doi.org/10.1126/science.215.4528.19

Leck MA, Parker VT, Simpson RL. 2008. Seedling Ecology and Evolution. Cambridge University Press, UK.

Luebert F, Pliscoff P. 2006. Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria, Santiago de Chile. 316 pp.

Mares MA, Enders FA, Kingsolver JM, Neff JL, Simpson BB. 1977. Prosopis as a niche component. In Simpson, BB. eds. Mesquite: its biology in two desert ecosystems, p. 123-149. Dowden, Hutchinsonand Ross Inc, Pennsylvania, Estados Unidos.

McRostie VB, Gayo EM, Santoro CM, de Pol-Holz R, Latorre C. 2017. The pre-Columbian introduction and dispersal of Algarrobo (Prosopis, Section Algarobia) in the Atacama Desert of northern Chile. PLoS One 12: e0181759. https://doi.org/10.1371/journal.pone.0181759

Mehringer PJ. 1967. The environment of extinction of the late-Pleistocene megafauna in the arid southwestern United States. In Martin PS, HE Wright eds. Pleistocene extinctions: the search for a cause. p. 247-266. Yale University Press, New Haven, Estados Unidos.

Meloni, DA, Gulotta, MR, Moura Silva, D, Arraiza, MP. 2019. Effects of salt stress on germination, seedling growth, osmotic adjustment, and chlorophyll fluorescence in Prosopis alba G. Revista de la Facultad de Ciencias Agrarias. Universidad Nacional de Cuyo, 51(1), 69-78.

Miranda RQ, Oliveira MTP, Correia RM, Almeida-Cortez JS, Pompelli MF. 2011. Germination of Prosopis juliflora (Sw) DC seeds after scarification treatments. Plant Species Biology 26: 186-192. https://doi.org/10.1111/j.1442-1984.2011.00324.x

Rodríguez R, Marticorena C, Alarcón D, Baeza C, Cavieres L, Finot VL, Fuentes N, Kiessling A, Mihoc M, Pauchard A, Ruiz E, Sanchez P, Marticorena A. 2018. Catálogo de las plantas vasculares de Chile. Gayana Botánica 75: 1–430. http://dx.doi.org/10.4067/S0717-66432018000100001

Terborgh J, Nuñez-Iturri G, Pitman NCA, Valverde FHC, Alvarez P, Swamy V, Pringle EG, Paine CET. 2008. Tree recruitment in an empty forest. Ecology 89: 1757–1768. https://doi.org/10.1890/07-0479.1

Traveset A, Verdú M. 2001. A Meta-analysis of the effect of gut treatment on seed germination. In Levey DJ, WR Silva, M Galetti eds. Seed dispersal and frugivory: ecology, evolution and conservation. p. 339–350. CAB International. https://doi.org/10.1079/9780851995250.0339

Traveset A, Robertson AW, Rodríguez-Pérez J. 2007. A review on the role of endozoochory in seed germination. In Denis AJ, EW Schupp, RJ Green, DA Wescott eds. Seed dispersal, Theory and its application in a changing world p. 78-103. CAB International. https://doi.org/10.1079/9781845931650.0078

Valdivia CE, Romero CR. 2013. En la senda de la extinción: el caso del algarrobo Prosopis chilensis (Fabaceae) y el bosque espinoso en la Región Metropolitana de Chile central. Gayana Botánica 70: 57–65. http://dx.doi.org/10.4067/S0717-66432013000100007

Vilela AE, Ravetta DA. 2001. The effect of seed scarification and soil-media on germination, growth, storage, and survival of seedlings of five species of Prosopis L. (Mimosaceae). Journal of Arid Environments 48: 171-184. https://doi.org/10.1006/jare.2000.0735

van der Wall SB. 2010. How plants manipulate the scatterhoarding behaviour of seed-dispersing animals. Philosophical Translations of the Royal Society B 365: 989–997. https://doi.org/10.1098/rstb.2009.0205

Venier P, Ferreras AE, Verga A, Funes, G. 2015. Germination traits of Prosopis alba from different provenances Seed Science & Technology 43(3): 1-6. https://doi.org/10.15258/sst.2015.43.3.14

Downloads

Published

07/01/2024

Issue

Section

Articles

How to Cite

Humaña, Ana María, and Carlos E. Valdivia. 2024. “Mechanical Scarification Increases Seed Germination of Neltuma Alba (Fabaceae), a Threatened Tree from the Atacama Desert”. Revista Peruana De Biología 31 (2): e26571. https://doi.org/10.15381/rpb.v31i2.26571.