Plasmid construction via in vivo cloning for the search and characterization of iron-binding oligopeptides in Saccharomyces cerevisiae

Authors

  • Pamela E. Canales (1) Laboratorio de Química Biológica y Bioanálisis, Departamento Académico de Química, Universidad Nacional Agraria La Molina, Av. La Molina sn, CP 15026, Lima, Perú; (2) Programa Doctoral en Ciencias e Ingeniería Biológicas, Universidad Nacional Agraria La Molina, Perú. https://orcid.org/0000-0001-6019-8846
  • Alondra I. Badillo (1) Laboratorio de Química Biológica y Bioanálisis, Departamento Académico de Química, Universidad Nacional Agraria La Molina, Av. La Molina sn, CP 15026, Lima, Perú; (3) Programa de Maestría en Nutrición, Universidad Nacional Agraria La Molina - Perú. https://orcid.org/0000-0001-7067-2054
  • Ana A. Kitazono Laboratorio de Química Biológica y Bioanálisis, Departamento Académico de Química, Universidad Nacional Agraria La Molina, Av. La Molina sn, CP 15026, Lima, Perú. https://orcid.org/0000-0002-6924-1799

DOI:

https://doi.org/10.15381/rpb.v31i2.27218

Keywords:

Yeast, random plasmid library, random peptides, iron-binding peptides

Abstract

Saccharomyces cerevisiae yeast serves as a nutritional supplement and food additive that may offer highly bioavailable iron. Several studies have demonstrated the viability of using iron-chelating oligopeptides to treat anaemia, suggesting that their production in yeast cells could advantageously provide an easy-to-use supplement. In this study, an in vivo cloning strategy was optimized to construct a semi-random plasmid library that enables the production of oligopeptides with six repetitions of Asp/Glu-Asp/Glu-Leu sequences. In these sequences, the first and second positions can include either aspartate or glutamate residues, while the third is always leucine. Additionally, several plasmids were constructed to allow the study of variants of the Arg-Glu-Glu oligopeptide, previously reported as an iron chelator. In each case, the required plasmid constructions were performed using an in vivo cloning strategy in S. cerevisiae, based on gap repair by homologous recombination. The procedure involves the co-transformation of yeast cells with the linearized plasmid and the fragment to be cloned, both with homologous flanking sequences. The resulting transformants harbor the correctly assembled plasmids and begin expressing the cloned genes, thereby enabling immediate analysis of the synthesized oligopeptides with known or semi-random sequences.

Downloads

Download data is not yet available.

References

Allen LH. 2002. Iron supplements: Scientific issues concerning efficacy and implications for research and programs. The Journal of Nutrition. 132(4):813S-819S. https://doi.org/10.1093/jn/132.4.813S

Bloor SR, Schutte R, Hobson AR. 2021. Oral iron supplementation-gastrointestinal side effects and the impact on the gut microbiota. Microbiology Research. 12(2):491-502. https://doi.org/10.3390/microbiolres12020033

Caetano-Silva ME, Cilla A, Bertoldo-Pacheco MT, Netto FM, Alegría A. 2018. Evaluation of in vitro iron bioavailability in free form and as whey peptide-iron complexes. Journal of Food Composition and Analysis. 68:95-100. https://doi.org/10.1016/j.jfca.2017.03.010

Chalamaiah M, Keskin Ulug S, Hong H, Wu J. 2019. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods. 58:123-129. https://doi.org/10.1016/j.jff.2019.04.050

Chang Y-J, Jo M-Y, Hwang E-H, Park C-U, Kim K-S. 2005. Recovery from iron deficiency in rats by the intake of recombinant yeast producing human h-ferritin. Nutrition. 21(4):520-524. https://doi.org/10.1016/j.nut.2004.07.016

de la Hoz L, Ponezi AN, Milani RF, Nunes da Silva VS, Sonia de Souza A, Bertoldo-Pacheco MT. 2014. Iron-binding properties of sugar cane yeast peptides. Food Chemistry. 142:166-169. https://doi.org/10.1016/j.foodchem.2013.06.133

de Llanos R, Martinez-Garay CA, Fita-Torro J, Romero AM, Martinez-Pastor MT, Puig S. 2016. Soybean ferritin expression in Saccharomyces cerevisiae modulates iron accumulation and resistance to elevated iron concentrations. Appl Environ Microbiol. 82(10):3052-3060. https://doi.org/10.1128/AEM.00305-16

Georgieff MK, Krebs NF, Cusick SE. 2019. The benefits and risks of iron supplementation in pregnancy and childhood. Annual Review of Nutrition. 39(1):121-146. https://doi.org/10.1146/annurev-nutr-082018-124213

Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH. 2002. A second set of loxp marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30(6):e2. https://doi.org/10.1093/nar/30.6.e23

Guo L, Harnedy PA, Li B, Hou H, Zhang Z, Zhao X, FitzGerald RJ. 2014. Food protein-derived chelating peptides: Biofunctional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science & Technology. 37(2):92-105. https://doi.org/10.1016/j.tifs.2014.02.007

Guthrie C, Fink GR. 2002. Guide to yeast genetics and molecular and cell biology, part c. Gulf Professional Publishing.

Kitazono AA. 2009. Improved gap-repair cloning method that uses oligonucleotides to target cognate sequences. Yeast. 26(9):497-505. https://doi.org/10.1002/yea.1680

Kitazono AA. 2011. Optimized protocols and plasmids for in vivo cloning in yeast. Gene. 484(1):86-89. https://doi.org/10.1016/j.gene.2011.06.006

Kosman DJ. 2003. Molecular mechanisms of iron uptake in fungi. Molecular microbiology. 47(5):1185-1197. https://doi.org/10.1046/j.1365-2958.2003.03368.x

Kyyaly MA, Powell C, Ramadan E. 2015. Preparation of iron-enriched baker's yeast and its efficiency in recovery of rats from dietary iron deficiency. Nutrition. 31(9):1155-1164. https://doi.org/10.1016/j.nut.2015.04.017

Li B, He H, Shi W, Hou T. 2019. Effect of duck egg white peptide-ferrous chelate on iron bioavailability in vivo and structure characterization. Journal of the Science of Food and Agriculture. 99(4):1834-1841. https://doi.org/10.1002/jsfa.9377

Li L, Chen OS, Ward DM, Kaplan J. 2001. Ccc1 is a transporter that mediates vacuolar iron storage in yeast. Journal of Biological Chemistry. 276(31):29515-29519. https://doi.org/10.1074/jbc.M103944200

Lv Y, Liu Q, Bao X, Tang W, Yang B, Guo S. 2009. Identification and characteristics of iron-chelating peptides from soybean protein hydrolysates using IMAC-Fe3+. Journal of Agricultural and Food Chemistry. 57(11):4593-4597. https://doi.org/10.1021/jf9000204

Ma X, Liu C, Song W, Che S, Wang C, Feng X, Li B, Dai Y. 2019. Evaluating the efficacy of a ferrous-ion-chelating peptide from alaska pollock frame for the improvement of iron nutritional status in rats. Food & Function. 10(8):4888-4896. https://doi.org/10.1039/C9FO00310J

Masuda T, Goto F, Yoshihara T. 2001. A novel plant ferritin subunit from soybean that is related to a mechanism in iron release. Journal of Biological Chemistry. 276(22):19575-19579. https://doi.org/10.1074/jbc.M011399200

Mumberg D, Müller R, Funk M. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene. 156(1):119-122. https://doi.org/10.1016/0378-1119(95)00037-7

Orbegozo J, Abanto M, García R, Ramírez P. 2008. Identificación molecular de Pichia guillermondii aislada de aguas ácidas de minas en el perú y su resistencia a metales pesados. Revista Peruana de Biología. 15(1):91-95. https://doi.org/10.15381/rpb.v15i1.1681

Scott JK, Craig L. 1994. Random peptide libraries. Curr Opin Biotechnol. 5(1):40-48. https://doi.org/10.1016/S0958-1669(05)80068-0

Sun X, Sarteshnizi RA, Boachie RT, Okagu OD, Abioye RO, Pfeilsticker Neves R, Ohanenye IC, Udenigwe CC. 2020. Peptide-mineral complexes: Understanding their chemical interactions, bioavailability, and potential application in mitigating micronutrient deficiency. Foods. 9(10):1402. https://doi.org/10.3390/foods9101402

Thomas BJ, Rothstein R. 1989. Elevated recombination rates in transcriptionally active DNA. Cell. 56(4):619-630. https://doi.org/10.1016/0092-8674(89)90584-9

Walters ME, Esfandi R, Tsopmo A. 2018. Potential of food hydrolyzed proteins and peptides to chelate iron or calcium and enhance their absorption. Foods. 7(10):172. https://doi.org/10.3390/foods7100172

Xiao C, Lei X, Wang Q, Du Z, Jiang L, Chen S, Zhang M, Zhang H, Ren F. 2016. Effects of a tripeptide iron on iron-deficiency anemia in rats. Biological Trace Element Research. 169(2):211-217. https://doi.org/10.1007/s12011-015-0412-6

Downloads

Published

07/01/2024

Issue

Section

Articles

How to Cite

Canales , Pamela E., Alondra I. Badillo, and Ana A. Kitazono. 2024. “Plasmid Construction via in Vivo Cloning for the Search and Characterization of Iron-Binding Oligopeptides in Saccharomyces Cerevisiae”. Revista Peruana De Biología 31 (2): e27218. https://doi.org/10.15381/rpb.v31i2.27218.