An inexact scalarization proximal point method for multiobjective quasiconvex minimization in Euclidean spaces
DOI:
https://doi.org/10.15381/pes.v22i1.16125Keywords:
Proximal point method; quasiconvex function; multiobjetive optimization; Clarke subdifferential; Fréchet subdifferentialAbstract
In this paper, we present an inexact scalarized proximal point method to solve unconstrained quasiconvex multiobjective minimization problems defined in Euclidean spaces, where the vector functions are locally Lipschitz. Under some natural assumptions, we prove that the sequence generated by the method is well defined and converges globally. Next, introduzing two error criteria on the method, two variants are obtained, and it is proved that the sequences generated by each one of these variants, converge to a Pareto-Clarke critical point of the problem.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Revistas Investigacion

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
THE AUTHORS RETAIN THEIR RIGHTS:
a) The authors retain their trademark and patent rights, and also on any process or procedure described in the article.
b) The authors retain the right to share, copy, distribute, execute and publicly communicate the article published in Pesquimat magazine (for example, place it in an institutional repository or publish it in a book), with recognition of its initial publication in the Pesquimat magazine.
c) The authors retain the right to make a later publication of their work, to use the article or any part of it (for example: a compilation of their works, notes for conferences, thesis, or for a book), provided that they indicate the source of publication (authors of the work, magazine, volume, number and date).