Bioprospección in vitro de hongos rizosféricos asociados al cactus (Opuntia cochenillifera) para la promoción del crecimiento vegetal

Autores/as

  • João Manoel da Silva Piauí State University, Campus Dep. Jesualdo Cavalcanti, Piauí, Brazil. https://orcid.org/0000-0002-7654-5475
  • Paula Cibelly Vilela da Silva Campus de Engenharias e Ciências Agrárias, Universidade Federal de Alagoas, Rio Largo, AL, Brazil. https://orcid.org/0000-0003-2157-4698
  • Viviane Araújo Dalbon Universidade de Córdoba, 77-305, Montería, Córdoba, Colombia. https://orcid.org/0000-0003-0510-1962
  • Regla Toujaguez la Rosa Massahud Campus de Engenharias e Ciências Agrárias, Universidade Federal de Alagoas, Rio Largo, AL, Brazil. https://orcid.org/0000-0002-6194-8028
  • Tania Marta Carvalho dos Santos Campus de Engenharias e Ciências Agrárias, Universidade Federal de Alagoas, Brazil. https://orcid.org/0000-0002-1816-7840
  • Gaus Silvestre de Andrade Lima Campus de Engenharias e Ciências Agrárias, Universidade Federal de Alagoas, Rio Largo, AL, Brazil.

DOI:

https://doi.org/10.15381/rpb.v29i2.22125

Palabras clave:

Ácido 3-indol acético, Fosfato, Restricción de agua, Antagonismo, Fusarium, Colletotrichum

Resumen

El objetivo de este estudio fue evaluar in vitro la capacidad de los hongos rizosféricos aislados del cactus Opuntia cochenillifera para promover el crecimiento de las plantas. Los aislados fueron sometidos a pruebas de solubilización de fosfato, producción de ácido 3-indol acético (AIA), antagonismo contra fitopatógenos y crecimiento bajo actividad de agua. Todos los resultados de las pruebas se sometieron a análisis estadístico. Los aislados estudiados fueron capaces de solubilizar fosfato, siendo F04 (Aspergillus sp.) y F05 (Coprinellus radians) los que presentaron los mayores índices de solubilización. Sobre la producción de AIA, los que más produjeron fueron F02 (Penicillium sp.) y F07 (Aspergillus sp.). Todos los aislados pudieron inhibir el crecimiento de Colletotrichum sp. e Fusarium sp.. La restricción de agua proporcionó el crecimiento del micelio para todos los aislados. Por lo tanto, estes aspectos les confieren características como promotores del crecimiento en las plantas.

Descargas

Los datos de descargas todavía no están disponibles.

Metrics

Métricas

Cargando métricas ...

Citas

Bakri MM. 2019. Tri-Calcium and Zinc Phosphates Solubilization by Aspergillus niger and Its Relation to Organic Acids Production. Bionanoscience. 9 (2): 238-244. https://doi.org/10.1007/s12668-019-0604-1

Brandão DFR. 2017. Isolamento de micro-organismos antagonistas de solo para o controle de Bipolaris oryzae, agente causal da mancha parda em arroz. Master deegree Dissertarion. Universidade de São Paulo, College of Agronomy. https://doi.org/10.11606/D.11.2018.tde-15052018-150256

Castro GSA, Bogiani JC, Silva MG, Rosolem CA. 2008. Tratamento de sementes de soja com inseticidas e um bioestimulante. Pesq. Agropec. Bras. 43 (10): 1311-1318. https://doi.org/10.1590/S0100-204X2008001000008

Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. 2020. Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. Diversity. 12 (10): 370. https://doi.org/10.3390/d12100370

Ferreira DF. 2014. Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciênc. Agrotec. 38 (2): 109-112. https://doi.org/10.1590/S1413-70542014000200001

Fu S-F, Wei J-Y, Chen H-W, et al. 2015. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant Signal. Behav. 10 (8). https://doi.org/10.1080/15592324.2015.1048052

Jaleel CA, Manivannan P, Wahid A, et al. 2009. Drought Stress in Plants: A Review on Morphological Characteristics and Pigments Composition. Int. J. Agric. Biol. 11 (1): 100-105.

Laranjeira S, Fernandes-Silva A, Reis S, Torcato C, Raimundo F, Ferreira L, Carnide V, Marques G. 2021. Inoculation of plant growth promoting bacteria and arbuscular mycorrhizal fungi improve chickpea performance under water deficit conditions. Appl.Soil Ecol. 164 (8): 103927. https://doi.org/10.1016/j.apsoil.2021.103927

Lubna SA, Hamayun M, Gul H, et al. 2018. Aspergillus niger CSR3 regulates plant endogenous hormones and secondary metabolites by producing gibberellins and indoleacetic acid. J Plant Interac. 13 (1): 100-111. https://doi.org/10.1080/17429145.2018.1436199

Lüttge U. 2007. Physiological ecology of tropical plants. 1st edn. Berlin: Springer.

Malavolta E, Vitti GC, Oliveira SA. 1997. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: Potafós.

Medeiros MS, Almeira SMC, Carnaúba JP, et al. 2020 Antagonismo in vitro de Fusarium oxysporum por cepas de Trichoderma spp. Cadernos de Agroecologia 15 (2): Anais do XI Congresso Brasileiro de Agroecologia [Seção CBA - Manejo de Agroecossistemas de Base Ecológica], São Cristóvão, Sergipe.

Montaldo YC. 2016. Bioprospecção e isolamento de bactérias associadas à cana-de-açúcar (Saccharum officinarum L.) com características para a promoção de crescimento vegetal. Doctoral Thesis, Institute of Chemistry and Biochemistry, Universidade Federal de Alagoas. http://www.repositorio.ufal.br/handle/riufal/1817

Moreira H, Pereira SIA, Vega A, Castro PML, Marques APGC. 2020. Synergistic effects of arbuscular mycorrhizal fungi and plant growth-promoting bacteria benefit maize growth under increasing soil salinity. J. Environ. Manage. 257 (3): 109982. https://doi.org/10.1016/j.jenvman.2019.109982

Munasinghe VKM, Savitri Kumar N, Jayasinghe L, et al. 2017. Indole-3-Acetic Acid Production by Colletotrichum siamense, An Endophytic Fungus from Piper nigrum Leaves. Journal of Biologically Act. Prod. Nature. 7 (6): 475-479. https://doi.org/10.1080/22311866.2017.1408429

Nascimento SPG, Silva JM, Silva PVM, et al. 2018. Impactos ambientais da produção vegetal no processo de desertificação do semiárido alagoano: o caso de Ouro Branco - AL. Rev. Ciênc. Agríc. 16 (sup): 31-35. https://doi.org/10.28998/rca.v16i0.6592

Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170 (1): 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

Oliveira AG, Chagas Junior AF, Santos GR, et al. 2012. Potencial de solubilização de fosfato e produção de AIA por Trichoderma spp. Revista Verde de Agroecologia e Desenvolvimento Sustentável 7 (3): 149-155.

Patel S, Parekh V, Patel K, et al. 2021. Plant Growth-promoting Activities of Penicillium sp. NAUSF2 Ameliorate Vigna radiata Salinity Stress in Phosphate-deficient Saline Soil. Appl. Biochem. Microbiol. 57: 500-507. https://doi.org/10.1134/S000368382104013X

Rawat P, Das S, Shankhdhar D, et al. 2020. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil Sci. Plant Nutr. 21: 49-68. https://doi.org/10.1007/s42729-020-00342-7

R Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

RStudio Team. 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA. URL http://www.rstudio.com/

Santos TB, Ribas AF, de Souza SGH, Budzinski IGF, Domingues DS. 2022. Physiological Responses to Drought, Salinity, and Heat Stress in Plants: A Review. Stresses 2 (1): 113-135. https://doi.org/10.3390/stresses2010009

Silva CS, Tenório FA, Silva JM, et al. 2018. Solubilização de fosfatos inorgânicos por bactérias endofíticas isoladas de maracujá amarelo (Passiflora edulis Sims f. flavicarpa). Revista Craibeiras de Agroecologia. v. 1 n. 1 (2018): XVII Encontro Regional de Agroeocologia do Nordeste.

Silva FC. 1999. Manual de análises químicas de solos, plantas e fertilizantes. Brasília, DF: Embrapa Informação Tecnológica. 627pp.

Silva, JM, Montaldo YC, de Almeida, ACPS, Dalbon VA, Acevedo JPM, dos Santos TMC, de Andrade Lima GS. 2021. Rhizospheric Fungi to Plant Growth Promotion: A review. J. Agric. Stud. 9 (1): 411-425. https://doi.org/10.5296/jas.v9i1.18321

Silva JM, Nascimento MS, Cristo CCN, et al. 2019. Antagonismo de Thielaviopsis paradoxa e Fusarium oxysporum por fungos rizosféricos associados à cactáceas do semiárido alagoano e eficiência de duas técnicas de avaliação. Global Science and Technology 12(1):197-206.

Silva JM, Santos TMC, Albuquerque LS, et al. 2015. Potential of the endophytic bacteria (Herbaspirillum spp. and Bacillus spp.) to promote sugarcane growth. Australian Journal of Crop Science 9 (8): 754-760.

Simi LD, Leite LG, Trevisan O, et al. 2018. Mortality of Conotrachelus humeropictus in response to combined application of the nematode Steinernema brazilense and the fungus Beauveria bassiana. Arqu. Inst. Biol. 85: 1-9. https://doi.org/10.1590/1808-1657000092016

Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x

Suárez-Estrella F, Arcos-Nievas MA, López MJ, et al. 2013. Biological control of plant pathogens by microorganisms isolated from agro-industrial composts. Biol. Control 67 (3): 509-515. https://doi.org/10.1016/j.biocontrol.2013.10.008

Taiz L, Zeiger E, Moller I, et al. 2017. Fisiologia e desenvolvimento vegetal. 6nd edn. Porto Alegre: Artmed.

Tortora GJ, Funke BR, Case Cl. Microbiologia. 2016. 12th edn. Porto Alegre: Artmed.

Turaeva B, Soliev A, Eshboev FA, et al. (2020). The use of three fungal strains in producing of indole-3-acetic acid and gibberelllic acid. Plant Cell Biotechnology and Molecular Biology 21 (35-36): 32-43.

Turbat A, Rakk D, Vigneshwari A, Kocsubé S, Thu H, Szepesi Á, Bakacsy L., et al. 2020. Characterization of the Plant Growth-Promoting Activities of Endophytic Fungi Isolated from Sophora flavescens. Microorganisms 8 (5): 683. https://doi.org/10.3390/microorganisms8050683

Vera DF, Pérez H, Valencia H. 2002. Aislamiento de hongos solubilizadores de fosfatos de la rizósfera de Arazá (Eugenia stipitata, Myrtaceae). Acta Biológica Colombiana 7 (1): 33-40.

Wicklow DT, Wilson DM. 1990. Paecilomyces lilacinus, a colonist of Aspergillus flavus sclerotia buried in soil in Illinois and Georgia. Mycologia 82 (3): 393-395. https://doi.org/10.1080/00275514.1990.12025898

Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S. 2021. Response Mechanism of Plants to Drought Stress. Horticulturae 7 (3): 50. https://doi.org/10.3390/horticulturae7030050

Yuniati Y, Rollando R. 2018. Isolation of antibacterial compounds from endophyte fungal of Fusarium sp. in Phyllanthus niruri linn. leaves. J Pharm. Sci. Res. 10 (2): 260-264.

Zaidi A, Khan MS, Ahemad M, et al. 2009. Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: M. Khan, A. Zaidi & J. Musarrat, eds. Microbial Strategies for Crop Improvement. Springer, Berlin, Heidelberg, pp. 23. https://doi.org/10.1007/978-3-642-01979-1_2

Zhang Y, Chen FS, Wu XQ, Luan FG, Zhang LP, Fang SM, Wan SZ, Hu XF, Ye JR. 2018. Isolation and characterization of two phosphate-solubilizing fungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLOS ONE 13 (7): e0199625. https://doi.org/10.1371/journal.pone.0199625

Descargas

Publicado

2022-05-30

Cómo citar

Silva, João Manoel da, Paula Cibelly Vilela da Silva, Viviane Araújo Dalbon, Regla Toujaguez la Rosa Massahud, Tania Marta Carvalho dos Santos, y Gaus Silvestre de Andrade Lima. 2022. «Bioprospección in Vitro De Hongos rizosféricos Asociados Al Cactus (Opuntia Cochenillifera) Para La promoción Del Crecimiento Vegetal». Revista Peruana De Biología 29 (2):e22125. https://doi.org/10.15381/rpb.v29i2.22125.

Número

Sección

Trabajos originales