Caracterización de consorcios microbianos lixiviantes de sulfuro de cobre aislados de drenajes ácidos de minas altoandinas

Autores/as

  • Sofia Rodriguez-Venturo Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Biológicas, Laboratorio de Microbiología Molecular y Biotecnología, Lima, Perú. https://orcid.org/0000-0002-0998-7222
  • Josemaría Herrera-Quiñonez Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Biológicas, Laboratorio de Microbiología Molecular y Biotecnología, Lima, Perú. https://orcid.org/0000-0001-5318-7292
  • César Bryan Reyes-Moreno Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Biológicas, Laboratorio de Microbiología Molecular y Biotecnología, Lima, Perú. https://orcid.org/0000-0001-7346-2917
  • Jaime Antezana-Mejía Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Biológicas, Laboratorio de Microbiología Molecular y Biotecnología, Lima, Perú. https://orcid.org/0000-0002-5189-277X
  • Julio Calderón-Alzamora Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Biológicas, Laboratorio de Microbiología Molecular y Biotecnología, Lima, Perú. https://orcid.org/0000-0002-2417-7770
  • Pablo Ramírez Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Biológicas, Laboratorio de Microbiología Molecular y Biotecnología, Lima, Perú. https://orcid.org/0000-0001-9309-7021

DOI:

https://doi.org/10.15381/rpb.v30i3.25317

Palabras clave:

biolixiviación, consorcios lixiviantes, psicrotolerantes, cobre, Mineria altoandina

Resumen

La biolixiviación, usando consorcios microbianos, es considera una alternativa ecoeficiente y de bajo costo para la recuperación de metales a partir de minerales de baja ley. En este estudio, se realizó la caracterización fisiológica y molecular de consorcios microbianos psicrotolerantes lixiviantes (CMPL), aislados de drenajes ácidos de minas de cuatro localidades mineras de las provincias de Pasco y Huarochirí, Perú, ubicados sobre los 4200 m de altitud. Se aislaron seis consorcios adaptados a medio 9K con ion ferroso y medio basal 9K con CuS al 0.5% p/v a 15 °C. Se evidenció la liberación de cobre en todos los consorcios. El CMPL con mejor crecimiento, presentó una recuperación de cobre de 12.47% en 30 días de evaluación. Los análisis de la secuenciación del gen ARNr 16S de la comunidad bacteriana, mostraron que los CMPL están dominados por el género Acidithiobacillus, seguido de Acidiphilium. En conclusión, se obtuvieron consorcios que pueden ser aplicados en biolixiviación de cobre en la minería altoandina.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Bacelar-nicolau P, Johnson DB. 1999. Leaching of Pyrite by Acidophilic Heterotrophic Iron-Oxidizing Bacteria in Pure and Mixed Cultures Leaching of Pyrite by Acidophilic Heterotrophic Iron-Oxidizing Bacteria in Pure and Mixed Cultures. Applied and Environmental Microbiology 65(2):585–590. https://doi.org/10.1128/AEM.65.2.585-590.1999

Barahona S, Castro-severyn J, Dorador C, Saavedra C, Remonsellez F. 2020. Determinants of Copper Resistance in Acidithiobacillus Ferrivorans ACH isolated from the Chilean Altiplano. Genes (Basel). 11(8). https://doi.org/10.3390/genes11080844

Baylón Coritoma M, Roa Castro K, Libio Sánchez T, Tapia Ugaz L, Jara Pena E. 2018. Evaluación de la diversidad de algas fitoplanctónicas como indicadores de la calidad del agua en lagunas altoandinas del departamento de Pasco (Perú). Ecología Aplicada 17(1):119–132. http://dx.doi.org/10.21704/rea.v17i1.1180

Bernaldo J. 2016. Diversidad molecular de consorcios microbianos lixiviantes psicrotolerantes aislados de zonas mineras de la provincia de Cerro de Pasco. Tesis de pregrado. Lima: Universidad Nacional Mayor de San Marcos. https://hdl.handle.net/20.500.12672/4921

Brierley CL, Brierley JA. 2013. Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology 97(17):7543–7552. https://doi.org/10.1007/s00253-013-5095-3

Cabrera G, Gómez JM, Cantero D. 2005. Kinetic study of ferrous sulphate oxidation of Acidithiobacillus ferrooxidans in the presence of heavy metal ions. Enzyme and Microbial Technology 36(2–3):301–306. https://doi.org/10.1016/j.enzmictec.2004.09.008

Ccorahua-Santo R, Eca A, Abanto M, Guerra G, Ramírez P. 2017. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature. Research in Microbiology 168(5). https://doi.org/10.1016/j.resmic.2017.01.007

Chen LX, Hu M, Huang LN, Hua ZS, Kuang JL, Li SJ, Shu WS. 2015. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9(7):1579–1592. https://doi.org/10.1038/ismej.2014.245

Dopson M, Halinen A, Rahunen N, Bestamin O, Sahinkaya E, Kaksonen AH, Lindstrom EB, Puhakka JA. 2007. Mineral and Iron Oxidation at Low Temperatures by Pure and Mixed Cultures of Acidophilic Microorganisms. Biotechnology and Bioengineering 97(5):1205–1215. https://doi.org/10.1002/bit.21312

Escobar B, Buccicardi S, Morales G, Wiertz J. 2010. Hydrometallurgy Biooxidation of ferrous iron and sulphide at low temperatures: Implications on acid mine drainage and bioleaching of sulphide minerals. Hydrometallurgy. 104(3–4):454–458. https://doi.org/10.1016/j.hydromet.2010.03.027

Illumina Inc. 2013. 16S Metagenomic sequencing library preparation. Prep 16S Ribosomal RNA Gene Amplicons Illumina. Illumina Technical Note 15044223:1–28.

Johnson DB. 2001. Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy. 59(2–3):147–157. https://doi.org/10.1016/S1572-4409(99)80066-2

Kuang J, Huang L, Chen L, Hua Z, Li S, Hu M, Li J, Shu W. 2013. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7(5):1038–1050. https://doi.org/10.1038/ismej.2012.139

Liljeqvist M, Ossandon FJ, Gonz C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M. 2015. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature. FEMS Microbiology Ecology 91(4). https://doi.org/10.1093/femsec/fiv011

Liljeqvist M, Rzhepishevska OI, Dopson M. 2013. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans. Applied and Environmental Microbiology 79(3):951–957. https://doi.org/10.1128/AEM.02989-12

Liljeqvist M, Valdes J, Holmes DS, Dopson M. 2011. Draft Genome of the Psychrotolerant Acidophile Acidithiobacillus ferrivorans SS3. Journal of Bacteriology 193(16):4304–4305. https://doi.org/10.1128/JB.05373-11

Liu Yi, Yin H, Liang Y, Shen L, Liu Yao, Fu X, Baba N, Zeng W, Qiu G, Liu X. 2011. Changes in the composition of an acid mine drainage microbial community upon successive transfers in medium containing low-grade copper sulfide. Bioresource Technology 102(20):9388–9394. https://doi.org/10.1016/j.biortech.2011.05.095

Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina O V, Manuel F. 2015. Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology 6:475. https://doi.org/10.3389/fmicb.2015.00475

Okibe N, Johnson DB. 2004. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: Significance of microbial interactions. Biotechnology and Bioengineering 87(5):574–583. https://doi.org/10.1002/bit.20138

Panda S, Biswal A, Mishra S, Panda PK, Pradhan N, Mohapatra U, Sukla LB, Mishra BK, Akcil A. 2015. Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy Sandeep. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2015.02.006

Peng J hua, Zhang R yong, Zhang Q, Zhang L min, Zhou H bo. 2008. Screening and characterization of Acidiphilium sp. PJH and its role in bioleaching. Transactions of Nonferrous Metals Society of China 18(6):1443–1449. https://doi.org/10.1016/S1003-6326(09)60023-6

Peng T, Liao W, Wang J, Miao J, Peng Y, Gu G, Wu X, Qiu G, Zeng W. 2021. Bioleaching and Electrochemical Behavior of Chalcopyrite by a Mixed Culture at Low Temperature. Frontiers in Microbiology 12:663757. https://doi.org/10.3389/fmicb.2021.663757

Peng T, Ma L, Feng X, Tao J, Nan M, Liu Y, Li J, Shen L, Wu X, Yu R, et al. 2017. Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage. PLoS One. 12(5):e0178008. https://doi.org/10.1371/journal.pone.0178008

Petersen J, Dixon DG. 2007. Microbial Processing of Metal Sulfides: Chapter 10: Principles, mechanisms and dynamics of chalcocite heap leaching. Microbial Processing of Metal Sulfides 193–218. https://doi.org/10.1007/1-4020-5589-7_10

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219

Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. 2004. Differential protein expression during growth of Acidithiobacillus ferooxidans on ferrous iron, sulfur compounds, or metal sulfides. Applied and Environmental Microbiology 70(8):4491–4498. https://doi.org/10.1128/AEM.70.8.4491-4498.2004

Rawlings DE, Johnson DB. 2007. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology. 153(2):315–324. https://doi.org/10.1099/mic.0.2006/001206-0

Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, Bokulich NA. 2021. RESCRIPt: Reproducible sequence taxonomy reference database management. PLOS Computational Biology 17(11):e1009581. https://doi.org/10.1371/journal.pcbi.1009581

Romo E, Weinacker DF, Zepeda AB, Figueroa CA, Chavez-Crooker P, Farias JG. 2013. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite. Brazilian Journal of Microbiology 44(2):523–528. https://doi.org/10.1590/S1517-83822013005000043

Sajjad W, Zheng G, Zhang G, Ma X, Xu W, Khan S. 2018. Bioleaching of copper ‑ and zinc ‑ bearing ore using consortia of indigenous iron ‑ oxidizing bacteria. Extremophiles. 22(6):851–863. https://doi.org/10.1007/s00792-018-1042-7

Varela P, Levicán G, Rivera F, Jerez CA. 1998. An immunological strategy to monitor in situ the phosphate starvation state in Thiobacillus ferrooxidans. Applied and Environmental Microbiology 64(12):4990–4993. https://doi.org/10.1128/aem.64.12.4990-4993.1998

Watling HR. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides — A review. Hydrometallurgy. 84(1–2):81–108. https://doi.org/10.1016/j.hydromet.2006.05.001

Wißkirchen C, Dold B, Friese K, Gläßer W. 2005. Hydrogeochemistry and sediment mineralogy of Lake Yanamate – an extremely acidic lake caused by discharge of acid mine drainage from the Pb-Zn- (Cu) deposit , Cerro de Pasco (Peru). Securing the Future: 1013–1022.

Yang Y, Diao M, Liu K, Qian L, Nguyen A V, Qiu G. 2013. Column bioleaching of low-grade copper ore by Acidithiobacillus ferrooxidans in pure and mixed cultures with a heterotrophic acidophile Acidiphilium sp . Hydrometallurgy. 131–132:93–98. https://doi.org/10.1016/j.hydromet.2012.09.003

Descargas

Publicado

15.09.2023

Número

Sección

Trabajos originales

Cómo citar

Rodriguez-Venturo, Sofia, Josemaría Herrera-Quiñonez, César Bryan Reyes-Moreno, Jaime Antezana-Mejía, Julio Calderón-Alzamora, and Pablo Ramírez. 2023. “Caracterización De Consorcios Microbianos Lixiviantes De Sulfuro De Cobre Aislados De Drenajes ácidos De Minas Altoandinas”. Revista Peruana De Biología 30 (3): e25317. https://doi.org/10.15381/rpb.v30i3.25317.