Caracterización de consorcios microbianos lixiviantes de sulfuro de cobre aislados de drenajes ácidos de minas altoandinas
DOI:
https://doi.org/10.15381/rpb.v30i3.25317Palabras clave:
biolixiviación, consorcios lixiviantes, psicrotolerantes, cobre, Mineria altoandinaResumen
La biolixiviación, usando consorcios microbianos, es considera una alternativa ecoeficiente y de bajo costo para la recuperación de metales a partir de minerales de baja ley. En este estudio, se realizó la caracterización fisiológica y molecular de consorcios microbianos psicrotolerantes lixiviantes (CMPL), aislados de drenajes ácidos de minas de cuatro localidades mineras de las provincias de Pasco y Huarochirí, Perú, ubicados sobre los 4200 m de altitud. Se aislaron seis consorcios adaptados a medio 9K con ion ferroso y medio basal 9K con CuS al 0.5% p/v a 15 °C. Se evidenció la liberación de cobre en todos los consorcios. El CMPL con mejor crecimiento, presentó una recuperación de cobre de 12.47% en 30 días de evaluación. Los análisis de la secuenciación del gen ARNr 16S de la comunidad bacteriana, mostraron que los CMPL están dominados por el género Acidithiobacillus, seguido de Acidiphilium. En conclusión, se obtuvieron consorcios que pueden ser aplicados en biolixiviación de cobre en la minería altoandina.
Descargas
Metrics
Métricas
Citas
Bacelar-nicolau P, Johnson DB. 1999. Leaching of Pyrite by Acidophilic Heterotrophic Iron-Oxidizing Bacteria in Pure and Mixed Cultures Leaching of Pyrite by Acidophilic Heterotrophic Iron-Oxidizing Bacteria in Pure and Mixed Cultures. Applied and Environmental Microbiology 65(2):585–590. https://doi.org/10.1128/AEM.65.2.585-590.1999
Barahona S, Castro-severyn J, Dorador C, Saavedra C, Remonsellez F. 2020. Determinants of Copper Resistance in Acidithiobacillus Ferrivorans ACH isolated from the Chilean Altiplano. Genes (Basel). 11(8). https://doi.org/10.3390/genes11080844
Baylón Coritoma M, Roa Castro K, Libio Sánchez T, Tapia Ugaz L, Jara Pena E. 2018. Evaluación de la diversidad de algas fitoplanctónicas como indicadores de la calidad del agua en lagunas altoandinas del departamento de Pasco (Perú). Ecología Aplicada 17(1):119–132. http://dx.doi.org/10.21704/rea.v17i1.1180
Bernaldo J. 2016. Diversidad molecular de consorcios microbianos lixiviantes psicrotolerantes aislados de zonas mineras de la provincia de Cerro de Pasco. Tesis de pregrado. Lima: Universidad Nacional Mayor de San Marcos. https://hdl.handle.net/20.500.12672/4921
Brierley CL, Brierley JA. 2013. Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology 97(17):7543–7552. https://doi.org/10.1007/s00253-013-5095-3
Cabrera G, Gómez JM, Cantero D. 2005. Kinetic study of ferrous sulphate oxidation of Acidithiobacillus ferrooxidans in the presence of heavy metal ions. Enzyme and Microbial Technology 36(2–3):301–306. https://doi.org/10.1016/j.enzmictec.2004.09.008
Ccorahua-Santo R, Eca A, Abanto M, Guerra G, Ramírez P. 2017. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature. Research in Microbiology 168(5). https://doi.org/10.1016/j.resmic.2017.01.007
Chen LX, Hu M, Huang LN, Hua ZS, Kuang JL, Li SJ, Shu WS. 2015. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9(7):1579–1592. https://doi.org/10.1038/ismej.2014.245
Dopson M, Halinen A, Rahunen N, Bestamin O, Sahinkaya E, Kaksonen AH, Lindstrom EB, Puhakka JA. 2007. Mineral and Iron Oxidation at Low Temperatures by Pure and Mixed Cultures of Acidophilic Microorganisms. Biotechnology and Bioengineering 97(5):1205–1215. https://doi.org/10.1002/bit.21312
Escobar B, Buccicardi S, Morales G, Wiertz J. 2010. Hydrometallurgy Biooxidation of ferrous iron and sulphide at low temperatures: Implications on acid mine drainage and bioleaching of sulphide minerals. Hydrometallurgy. 104(3–4):454–458. https://doi.org/10.1016/j.hydromet.2010.03.027
Illumina Inc. 2013. 16S Metagenomic sequencing library preparation. Prep 16S Ribosomal RNA Gene Amplicons Illumina. Illumina Technical Note 15044223:1–28.
Johnson DB. 2001. Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy. 59(2–3):147–157. https://doi.org/10.1016/S1572-4409(99)80066-2
Kuang J, Huang L, Chen L, Hua Z, Li S, Hu M, Li J, Shu W. 2013. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7(5):1038–1050. https://doi.org/10.1038/ismej.2012.139
Liljeqvist M, Ossandon FJ, Gonz C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M. 2015. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature. FEMS Microbiology Ecology 91(4). https://doi.org/10.1093/femsec/fiv011
Liljeqvist M, Rzhepishevska OI, Dopson M. 2013. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans. Applied and Environmental Microbiology 79(3):951–957. https://doi.org/10.1128/AEM.02989-12
Liljeqvist M, Valdes J, Holmes DS, Dopson M. 2011. Draft Genome of the Psychrotolerant Acidophile Acidithiobacillus ferrivorans SS3. Journal of Bacteriology 193(16):4304–4305. https://doi.org/10.1128/JB.05373-11
Liu Yi, Yin H, Liang Y, Shen L, Liu Yao, Fu X, Baba N, Zeng W, Qiu G, Liu X. 2011. Changes in the composition of an acid mine drainage microbial community upon successive transfers in medium containing low-grade copper sulfide. Bioresource Technology 102(20):9388–9394. https://doi.org/10.1016/j.biortech.2011.05.095
Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina O V, Manuel F. 2015. Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology 6:475. https://doi.org/10.3389/fmicb.2015.00475
Okibe N, Johnson DB. 2004. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: Significance of microbial interactions. Biotechnology and Bioengineering 87(5):574–583. https://doi.org/10.1002/bit.20138
Panda S, Biswal A, Mishra S, Panda PK, Pradhan N, Mohapatra U, Sukla LB, Mishra BK, Akcil A. 2015. Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy Sandeep. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2015.02.006
Peng J hua, Zhang R yong, Zhang Q, Zhang L min, Zhou H bo. 2008. Screening and characterization of Acidiphilium sp. PJH and its role in bioleaching. Transactions of Nonferrous Metals Society of China 18(6):1443–1449. https://doi.org/10.1016/S1003-6326(09)60023-6
Peng T, Liao W, Wang J, Miao J, Peng Y, Gu G, Wu X, Qiu G, Zeng W. 2021. Bioleaching and Electrochemical Behavior of Chalcopyrite by a Mixed Culture at Low Temperature. Frontiers in Microbiology 12:663757. https://doi.org/10.3389/fmicb.2021.663757
Peng T, Ma L, Feng X, Tao J, Nan M, Liu Y, Li J, Shen L, Wu X, Yu R, et al. 2017. Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage. PLoS One. 12(5):e0178008. https://doi.org/10.1371/journal.pone.0178008
Petersen J, Dixon DG. 2007. Microbial Processing of Metal Sulfides: Chapter 10: Principles, mechanisms and dynamics of chalcocite heap leaching. Microbial Processing of Metal Sulfides 193–218. https://doi.org/10.1007/1-4020-5589-7_10
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219
Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. 2004. Differential protein expression during growth of Acidithiobacillus ferooxidans on ferrous iron, sulfur compounds, or metal sulfides. Applied and Environmental Microbiology 70(8):4491–4498. https://doi.org/10.1128/AEM.70.8.4491-4498.2004
Rawlings DE, Johnson DB. 2007. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology. 153(2):315–324. https://doi.org/10.1099/mic.0.2006/001206-0
Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, Bokulich NA. 2021. RESCRIPt: Reproducible sequence taxonomy reference database management. PLOS Computational Biology 17(11):e1009581. https://doi.org/10.1371/journal.pcbi.1009581
Romo E, Weinacker DF, Zepeda AB, Figueroa CA, Chavez-Crooker P, Farias JG. 2013. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite. Brazilian Journal of Microbiology 44(2):523–528. https://doi.org/10.1590/S1517-83822013005000043
Sajjad W, Zheng G, Zhang G, Ma X, Xu W, Khan S. 2018. Bioleaching of copper ‑ and zinc ‑ bearing ore using consortia of indigenous iron ‑ oxidizing bacteria. Extremophiles. 22(6):851–863. https://doi.org/10.1007/s00792-018-1042-7
Varela P, Levicán G, Rivera F, Jerez CA. 1998. An immunological strategy to monitor in situ the phosphate starvation state in Thiobacillus ferrooxidans. Applied and Environmental Microbiology 64(12):4990–4993. https://doi.org/10.1128/aem.64.12.4990-4993.1998
Watling HR. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides — A review. Hydrometallurgy. 84(1–2):81–108. https://doi.org/10.1016/j.hydromet.2006.05.001
Wißkirchen C, Dold B, Friese K, Gläßer W. 2005. Hydrogeochemistry and sediment mineralogy of Lake Yanamate – an extremely acidic lake caused by discharge of acid mine drainage from the Pb-Zn- (Cu) deposit , Cerro de Pasco (Peru). Securing the Future: 1013–1022.
Yang Y, Diao M, Liu K, Qian L, Nguyen A V, Qiu G. 2013. Column bioleaching of low-grade copper ore by Acidithiobacillus ferrooxidans in pure and mixed cultures with a heterotrophic acidophile Acidiphilium sp . Hydrometallurgy. 131–132:93–98. https://doi.org/10.1016/j.hydromet.2012.09.003
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Sofia Rodriguez-Venturo, Josemaría Herrera-Quiñonez, César Bryan Reyes-Moreno, Jaime Antezana-Mejía, Julio Calderón-Alzamora , Pablo Ramírez

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
LOS AUTORES RETIENEN SUS DERECHOS:
a. Los autores retienen sus derechos de marca y patente, y también sobre cualquier proceso o procedimiento descrito en el artículo.
b. Los autores retienen el derecho de compartir, copiar, distribuir, ejecutar y comunicar públicamente el artículo publicado en la Revista Peruana de Biología (por ejemplo, colocarlo en un repositorio institucional o publicarlo en un libro), con un reconocimiento de su publicación inicial en la Revista Peruana de Biología.
c. Los autores retienen el derecho a hacer una posterior publicación de su trabajo, de utilizar el artículo o cualquier parte de aquel (por ejemplo: una compilación de sus trabajos, notas para conferencias, tesis, o para un libro), siempre que indiquen su publicación inicial en la Revista Peruana de Biología (autores del trabajo, revista, volumen, número y fecha).