Characterization of copper sulfide leaching microbial consortia isolated from High-Andean acid mine drainage
DOI:
https://doi.org/10.15381/rpb.v30i3.25317Keywords:
Bioleaching, leaching consortia, psicrotolerant, copper, High-Andean miningAbstract
Bioleaching, using microbial consortia, is regarded as an eco-efficient and cost-effective alternative for the recovery of metals from low-grade ores. In this study, we conducted physiological and molecular characterization of psychrotolerant leaching microbial consortia (PLMC) isolated from acid mine drainage in four mining sites within the Pasco and Huarochirí provinces of Peru, situated at altitudes above 4200 meters. Six consortia adapted to a medium containing ferrous ions (9K medium) and a basal medium with 0.5% w/v CuS at 15°C were isolated. All consortia exhibited copper release. The PLMC with the most robust growth achieved a copper recovery of 12.47% within 30 days of evaluation. 16S rRNA gene sequencing analysis of the bacterial community revealed that the PLMCs were predominantly dominated by the genus Acidithiobacillus, followed by Acidiphilium. In conclusion, consortia suitable for copper biolixiviation in high-altitude mining contexts were successfully obtained.
Downloads
References
Bacelar-nicolau P, Johnson DB. 1999. Leaching of Pyrite by Acidophilic Heterotrophic Iron-Oxidizing Bacteria in Pure and Mixed Cultures Leaching of Pyrite by Acidophilic Heterotrophic Iron-Oxidizing Bacteria in Pure and Mixed Cultures. Applied and Environmental Microbiology 65(2):585–590. https://doi.org/10.1128/AEM.65.2.585-590.1999
Barahona S, Castro-severyn J, Dorador C, Saavedra C, Remonsellez F. 2020. Determinants of Copper Resistance in Acidithiobacillus Ferrivorans ACH isolated from the Chilean Altiplano. Genes (Basel). 11(8). https://doi.org/10.3390/genes11080844
Baylón Coritoma M, Roa Castro K, Libio Sánchez T, Tapia Ugaz L, Jara Pena E. 2018. Evaluación de la diversidad de algas fitoplanctónicas como indicadores de la calidad del agua en lagunas altoandinas del departamento de Pasco (Perú). Ecología Aplicada 17(1):119–132. http://dx.doi.org/10.21704/rea.v17i1.1180
Bernaldo J. 2016. Diversidad molecular de consorcios microbianos lixiviantes psicrotolerantes aislados de zonas mineras de la provincia de Cerro de Pasco. Tesis de pregrado. Lima: Universidad Nacional Mayor de San Marcos. https://hdl.handle.net/20.500.12672/4921
Brierley CL, Brierley JA. 2013. Progress in bioleaching: part B: applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology 97(17):7543–7552. https://doi.org/10.1007/s00253-013-5095-3
Cabrera G, Gómez JM, Cantero D. 2005. Kinetic study of ferrous sulphate oxidation of Acidithiobacillus ferrooxidans in the presence of heavy metal ions. Enzyme and Microbial Technology 36(2–3):301–306. https://doi.org/10.1016/j.enzmictec.2004.09.008
Ccorahua-Santo R, Eca A, Abanto M, Guerra G, Ramírez P. 2017. Physiological and comparative genomic analysis of Acidithiobacillus ferrivorans PQ33 provides psychrotolerant fitness evidence for oxidation at low temperature. Research in Microbiology 168(5). https://doi.org/10.1016/j.resmic.2017.01.007
Chen LX, Hu M, Huang LN, Hua ZS, Kuang JL, Li SJ, Shu WS. 2015. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9(7):1579–1592. https://doi.org/10.1038/ismej.2014.245
Dopson M, Halinen A, Rahunen N, Bestamin O, Sahinkaya E, Kaksonen AH, Lindstrom EB, Puhakka JA. 2007. Mineral and Iron Oxidation at Low Temperatures by Pure and Mixed Cultures of Acidophilic Microorganisms. Biotechnology and Bioengineering 97(5):1205–1215. https://doi.org/10.1002/bit.21312
Escobar B, Buccicardi S, Morales G, Wiertz J. 2010. Hydrometallurgy Biooxidation of ferrous iron and sulphide at low temperatures: Implications on acid mine drainage and bioleaching of sulphide minerals. Hydrometallurgy. 104(3–4):454–458. https://doi.org/10.1016/j.hydromet.2010.03.027
Illumina Inc. 2013. 16S Metagenomic sequencing library preparation. Prep 16S Ribosomal RNA Gene Amplicons Illumina. Illumina Technical Note 15044223:1–28.
Johnson DB. 2001. Importance of microbial ecology in the development of new mineral technologies. Hydrometallurgy. 59(2–3):147–157. https://doi.org/10.1016/S1572-4409(99)80066-2
Kuang J, Huang L, Chen L, Hua Z, Li S, Hu M, Li J, Shu W. 2013. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7(5):1038–1050. https://doi.org/10.1038/ismej.2012.139
Liljeqvist M, Ossandon FJ, Gonz C, Rajan S, Stell A, Valdes J, Holmes DS, Dopson M. 2015. Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature. FEMS Microbiology Ecology 91(4). https://doi.org/10.1093/femsec/fiv011
Liljeqvist M, Rzhepishevska OI, Dopson M. 2013. Gene identification and substrate regulation provide insights into sulfur accumulation during bioleaching with the psychrotolerant acidophile Acidithiobacillus ferrivorans. Applied and Environmental Microbiology 79(3):951–957. https://doi.org/10.1128/AEM.02989-12
Liljeqvist M, Valdes J, Holmes DS, Dopson M. 2011. Draft Genome of the Psychrotolerant Acidophile Acidithiobacillus ferrivorans SS3. Journal of Bacteriology 193(16):4304–4305. https://doi.org/10.1128/JB.05373-11
Liu Yi, Yin H, Liang Y, Shen L, Liu Yao, Fu X, Baba N, Zeng W, Qiu G, Liu X. 2011. Changes in the composition of an acid mine drainage microbial community upon successive transfers in medium containing low-grade copper sulfide. Bioresource Technology 102(20):9388–9394. https://doi.org/10.1016/j.biortech.2011.05.095
Méndez-García C, Peláez AI, Mesa V, Sánchez J, Golyshina O V, Manuel F. 2015. Microbial diversity and metabolic networks in acid mine drainage habitats. Frontiers in Microbiology 6:475. https://doi.org/10.3389/fmicb.2015.00475
Okibe N, Johnson DB. 2004. Biooxidation of pyrite by defined mixed cultures of moderately thermophilic acidophiles in pH-controlled bioreactors: Significance of microbial interactions. Biotechnology and Bioengineering 87(5):574–583. https://doi.org/10.1002/bit.20138
Panda S, Biswal A, Mishra S, Panda PK, Pradhan N, Mohapatra U, Sukla LB, Mishra BK, Akcil A. 2015. Reductive dissolution by waste newspaper for enhanced meso-acidophilic bioleaching of copper from low grade chalcopyrite: A new concept of biohydrometallurgy Sandeep. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2015.02.006
Peng J hua, Zhang R yong, Zhang Q, Zhang L min, Zhou H bo. 2008. Screening and characterization of Acidiphilium sp. PJH and its role in bioleaching. Transactions of Nonferrous Metals Society of China 18(6):1443–1449. https://doi.org/10.1016/S1003-6326(09)60023-6
Peng T, Liao W, Wang J, Miao J, Peng Y, Gu G, Wu X, Qiu G, Zeng W. 2021. Bioleaching and Electrochemical Behavior of Chalcopyrite by a Mixed Culture at Low Temperature. Frontiers in Microbiology 12:663757. https://doi.org/10.3389/fmicb.2021.663757
Peng T, Ma L, Feng X, Tao J, Nan M, Liu Y, Li J, Shen L, Wu X, Yu R, et al. 2017. Genomic and transcriptomic analyses reveal adaptation mechanisms of an Acidithiobacillus ferrivorans strain YL15 to alpine acid mine drainage. PLoS One. 12(5):e0178008. https://doi.org/10.1371/journal.pone.0178008
Petersen J, Dixon DG. 2007. Microbial Processing of Metal Sulfides: Chapter 10: Principles, mechanisms and dynamics of chalcocite heap leaching. Microbial Processing of Metal Sulfides 193–218. https://doi.org/10.1007/1-4020-5589-7_10
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2012. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research 41(D1):D590–D596. https://doi.org/10.1093/nar/gks1219
Ramírez P, Guiliani N, Valenzuela L, Beard S, Jerez CA. 2004. Differential protein expression during growth of Acidithiobacillus ferooxidans on ferrous iron, sulfur compounds, or metal sulfides. Applied and Environmental Microbiology 70(8):4491–4498. https://doi.org/10.1128/AEM.70.8.4491-4498.2004
Rawlings DE, Johnson DB. 2007. The microbiology of biomining: Development and optimization of mineral-oxidizing microbial consortia. Microbiology. 153(2):315–324. https://doi.org/10.1099/mic.0.2006/001206-0
Robeson MS, O’Rourke DR, Kaehler BD, Ziemski M, Dillon MR, Foster JT, Bokulich NA. 2021. RESCRIPt: Reproducible sequence taxonomy reference database management. PLOS Computational Biology 17(11):e1009581. https://doi.org/10.1371/journal.pcbi.1009581
Romo E, Weinacker DF, Zepeda AB, Figueroa CA, Chavez-Crooker P, Farias JG. 2013. Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite. Brazilian Journal of Microbiology 44(2):523–528. https://doi.org/10.1590/S1517-83822013005000043
Sajjad W, Zheng G, Zhang G, Ma X, Xu W, Khan S. 2018. Bioleaching of copper ‑ and zinc ‑ bearing ore using consortia of indigenous iron ‑ oxidizing bacteria. Extremophiles. 22(6):851–863. https://doi.org/10.1007/s00792-018-1042-7
Varela P, Levicán G, Rivera F, Jerez CA. 1998. An immunological strategy to monitor in situ the phosphate starvation state in Thiobacillus ferrooxidans. Applied and Environmental Microbiology 64(12):4990–4993. https://doi.org/10.1128/aem.64.12.4990-4993.1998
Watling HR. 2006. The bioleaching of sulphide minerals with emphasis on copper sulphides — A review. Hydrometallurgy. 84(1–2):81–108. https://doi.org/10.1016/j.hydromet.2006.05.001
Wißkirchen C, Dold B, Friese K, Gläßer W. 2005. Hydrogeochemistry and sediment mineralogy of Lake Yanamate – an extremely acidic lake caused by discharge of acid mine drainage from the Pb-Zn- (Cu) deposit , Cerro de Pasco (Peru). Securing the Future: 1013–1022.
Yang Y, Diao M, Liu K, Qian L, Nguyen A V, Qiu G. 2013. Column bioleaching of low-grade copper ore by Acidithiobacillus ferrooxidans in pure and mixed cultures with a heterotrophic acidophile Acidiphilium sp . Hydrometallurgy. 131–132:93–98. https://doi.org/10.1016/j.hydromet.2012.09.003
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Sofia Rodriguez-Venturo, Josemaría Herrera-Quiñonez, César Bryan Reyes-Moreno, Jaime Antezana-Mejía, Julio Calderón-Alzamora , Pablo Ramírez

This work is licensed under a Creative Commons Attribution 4.0 International License.
AUTHORS RETAIN THEIR RIGHTS:
a. Authors retain their trade mark rights and patent, and also on any process or procedure described in the article.
b. Authors retain their right to share, copy, distribute, perform and publicly communicate their article (eg, to place their article in an institutional repository or publish it in a book), with an acknowledgment of its initial publication in the Revista Peruana de Biologia.
c. Authors retain theirs right to make a subsequent publication of their work, to use the article or any part thereof (eg a compilation of his papers, lecture notes, thesis, or a book), always indicating its initial publication in the Revista Peruana de Biologia (the originator of the work, journal, volume, number and date).