Genetic diversity and genetic structure of Puya raimondii (Bromeliaceae) for its conservation in the Peruvian Andes

Authors

  • Liscely Tumi Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Biológicas, Laboratorio de Fisiología Vegetal, Lima, Perú. https://orcid.org/0000-0002-1071-1645
  • Xue-Jun Ge South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
  • Gerson E. Prado Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Biológicas, Laboratorio de Fisiología Vegetal, Lima, Perú. https://orcid.org/0000-0003-1755-335X
  • Andrea Cosacov Laboratorio de Ecología Evolutiva y Biología Floral, Instituto Multidisciplinario de Biología Vegetal, Córdova, Argentina. https://orcid.org/0000-0002-3775-7707
  • Victor H. García Grupo de Evolución, Ecología y Conservación, Universidad del Quindío, Armenia, Quindío, Colombia.
  • Mónica Arakaki Universidad Nacional Mayor de San Marcos, Museo de Historia Natural, Laboratorio de Sistemática y Diversidad Vegetal, Lima, Perú.
  • Mery L. Suni Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Biológicas, Laboratorio de Fisiología Vegetal, Lima, Perú. https://orcid.org/0000-0003-4064-1497

DOI:

https://doi.org/10.15381/rpb.v29i2.22557

Keywords:

Microsatellites, Puya raimondii, populations, conservation genetics, Andes

Abstract

Puya raimondii is an endemic species from the high Andes of Peru and Bolivia. In Peru it is distributed from 8.068501°S, 16.170280°W to 16.180580°S, 70.658873°W, between 3600 and 4800 m, living in extreme climatic conditions typical of the Puna, where it plays an important ecological role. Despite the wide distribution of P. raimondii populations in Peru, they appear to be fairly uniform morphologically. The following questions arise: Will the current molecular tools be able to show differences between the numerous populations? Are the conservation areas established for P. raimondii sufficient since they harbor the existing variability? To answer these questions, this work aimed to evaluate the genetic diversity and genetic structure in a northern population, Pachapaqui (Ancash department), a central population, Yanacancha (Junin), and a southern population, Lampa - Choconchaca sector (Puno), using microsatellite markers (SSR) specific for the species. The genetic diversity parameters used included number of alleles (A), exclusive alleles (RA), observed heterozygosity (Ho), expected heterozygosity (He), and polymorphic content index (PIC). The results showed that the total number of A varied from 2 - 13, the He values were 0 ‒ 0.723 and Ho 0 ‒ 0.929, with an average He of 0.217, indicating a moderate to high genetic diversity, being the population of Lampa-Choconchaca sector, the one that presented the greatest allelic diversity and the greatest genetic diversity. The Hardy-Weinberg test showed that the populations are in HW disequilibrium, the statistical analysis indicates 65% of the genetic variation at the population level and values of FST (0.426) and RST (0.650) that indicate high genetic differentiation among populations, with two genetic groups (K=2) that correspond to the populations of northern-central and southern Peru. The results provide useful information to establish conservation strategies for P. raimondii, which lead to the creation of an additional conservation area to protect the populations in southern Peru.

Downloads

Download data is not yet available.

References

Acuña W. 2016. Determinación de la diversidad genética y estructura genética de patos criollos (Cairina moschata L. 1758) de los departamentos de Lambayeque y San Martín mediante el uso de microsatélites. Thesis to obtain the Professional Degree of Biologist. UNMSM.

Balloux F, Lugon N. 2002. The estimation of population differentiation with microsatellite markers. Molecular Ecology 11(2): 155–165. https://doi.org/10.1046/j.0962-1083.2001.01436.x

Benzing DH. 2000. Bromeliaceae profile of an adaptive radiation. Cambridge University Press, Cambridge.

Carpenter FL. 1978. A spectrum of nectar-eater communities. American Zoologist 18: 809-819. https://doi.org/10.1093/icb/18.4.809

Chapin III F, Zavaleta E, Eviner V, et al. 2005. Consequences of changing biodiversity. Nature 405(9): 234-242. https://doi.org/10.1038/35012241

Domingues R, Machado A, Forzza C, et al. 2011. Genetic variability of an endangered bromeliaceae species (Pitcairnia albiflos) from the Brazilian atlantic rainforest. Genetics and Molecular Research 10(4): 2482–2491. https://doi.org/10.4238/2011.october.13.5

Dorst J. 1956. The puya stands of the peruvian high plateux as a bird hábitat. Ibis 99(4): 594-599. https://doi.org/10.1111/j.1474-919X.1957.tb03051.x

Earl A, Holdt M. 2012. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4(2): 359-361. https://doi.org/10.1007/s12686-011-9548-7

Estoup A, Jarne P, Cornuet J. 2002. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular Ecology 11(9): 1591–604. https://doi.org/10.1046/j.1365-294x.2002.01576.x

Etten M, Pearson M, Robertson W, et al. 2018. Microsatellite markers for Corybas (Orchidaceae) species in New Zealand. Applications in Plant Sciences 6(11): 4–8. https://doi.org/10.1002/aps3.1192

Evanno G, Regnaut S & Goudet J. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14: 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Excoffier L & Lischer L. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3): 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

García-Meneses PM, Ramsay PM. 2012. Pollinator response to within-patch spatial context determines reproductive output of a giant rosette plant. Basic and Applied Ecology 13: 526-523. https://doi.org/10.1016/j.baae.2012.08.011

Godefroid S, Piazza C, Rossi G, et al. 2011. How successful are plant species reintroductions? Biological Conservation 144(2): 672–682. https://doi.org/10.1016/j.biocon.2010.10.003

González EG. 2003. Microsatélites: sus aplicaciones en la conservación de la biodiversidad. Graellsia 59 (2-3): 377-388. http://graellsia.revistas.csic.es

Hale M, Burg T, Steeves T. 2012. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLOS ONE 7(9): 45170. https://doi.org/10.1371/journal.pone.0045170

Hardy O, Charbonnel N, Fréville H, et al. 2003. Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163(4): 1467– 82. https://www.ncbi.nlm.nih.gov/pubmed/12702690

Hartmann O. 1981. Puya raimondii Harms cada vez son menos. Boletín de Lima 10: 79-83.

Hornung-Leoni C, González-Gómez P, Troncoso A. 2013a. Morphology, nectar characteristics and avian pollinators in five Andean Puya species (Bromeliaceae). Acta Oecologica 51, 54–61. https://doi.org/10.1016/j.actao.2013.05.010

Hornung-Leoni C, Sosa V, Simpson J, Gil K. 2013b. Genetic variation in the emblematic Puya raimondii (Bromeliaceae) from Huascarán National Park, Peru. Crop Breeding and Applied Biotechnology 13(1): 67–74. http://dx.doi.org/10.1590/S1984-70332013000100008

Jabaily R & Sytsma K. 2013. Historical biogeography and life-history evolution of Andean Puya (Bromeliaceae). Botanical Journal of the Linnean Society 171(1): 201–224. https://doi.org/10.1111/j.1095-8339.2012.01307

Kim B, Lee S, Kim Y, et al. 2018. Development and characterization of 30 microsatellite loci for Plagiorhegma dubium (Berberidaceae). Applications in Plant Sciences 6(12): 1–5. https://doi.org/10.1002/aps3.1200

López-Gallego C. 2015. Monitoreo de poblaciones de plantas para conservación: recomendaciones para implementar planes de monitoreo para especies de plantas de interés en conservación. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH). Bogotá D.C., Colombia. 56 p.

Lower A, Harris S, Ashthon P. 2004. Ecological Genetics; design, analysis and application. Oxford: Blackwell Publishing.

Meirmans PG. 2012. The trouble with isolation by distance. Molecular Ecology 21:2839-2846. https://doi: 10.1111/j.1365-294X.2012.05578.x

Miller G & Silander J. 1991. Control of the distribution of giant rosette species of Puya (Bromeliaceae) in the Ecuadorian páramos. Biotropica 23 (2): 124-133. https://doi.org/10.2307/2388297

Murray M & Thomson W. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Resources 8(19): 4321-4325. https://dx.doi.org/10.1093%2Fnar%2F8.19.4321

Myers N, Mittermeier R, Mittermeier C, et al 2000. Conservation: Biodiversity as a bonus prize. Nature 468(7326): 895. https://doi.org/10.1038/468895

Oliveira E, Pádua J, Zucchi M, et al. 2006. Origin, evolution, and genome distribution of microsatellites. Genetics and Molecular Biology 29: 294–307. https://doi.org/10.1590/S1415-47572006000200018

Porebski S, Bailey G, Baum B. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15: 8–15. https://doi.org/10.1007/BF02772108

Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

Pritchard JK, Wen X & Falush D. 2010. Documentation for Structure Software: Version 2.3. University of Chicago & University of Oxford.

Raimondi A. 1874. El Perú. Parte Preliminar (Tomo I). Imprenta del Estado. Lima. pp. 293-297.

Raymond M, Rousset F. 1995. GENEPOP: Population genetics software for exact tests and ecumenicism. J Hered. 86(3):9–10.

Rivadeneira Gallegos GS. 2016. Estructura Genética y Ecológica de poblaciones de Puya hamata (Bromeliaceae) en el Páramo del Volcán Chiles. Tesis de Licenciatura. Pontificia Universidad Católica del Ecuador. http://repositorio.puce.edu.ec/handle/22000/11456

Rivera CA. 1985. Puya raimondii Harms. Boletín de Lima 7: 85-91.

Rozzi S. 2011. Fortalecimiento de capacidades locales dirigidas al logro de la eco-sostenibilidad del ACR Rodal de Puya raimondii – “Titankayocc”. Perfil de proyecto. Gobierno Regional de Ayacucho, Perú.

Salazar Castillo J, Villasante Benavides F. 2012. Distribución geográfica y situación actual de Puya raimondii Harms en la Región de Arequipa - Perú. Octubre 2009 – Marzo 2011. Quaderni di Botanica Ambientale e Applicata 23, 31–39. http://ortobotanico.unipa.it/quaderni/23_031.pdf

Salinas L, Arana C, Suni M. 2007. El néctar de especies de Puya como recurso para picaflores Altoandinos de Ancash, Perú. Revista Peruana de Biologia 14(1): 129–134. https://doi.org/10.15381/rpb.v14i1.2166

Schulte K, Silvestro D, Kiehlmann E, et al. 2010. Detection of recent hybridization between sympatric Chilean Puya species (Bromeliaceae) using AFLP markers and reconstruction of complex relationships. Molecular Phylogenetics and Evolution 57: 1105–1119. https://doi.org/10.1016/j.ympev.2010.09.001

Sgorbati S, Labra M, Grugni E, et al. 2004. A survey of genetic diversity and reproductive biology of Puya raimondii (Bromeliaceae), the endangered queen of the Andes. Plant Biol (Stuttg) 6(2): 222-30. https://doi.org/10.1055/s-2004-817802

Shapcott A, James H, Simmons L, et al. 2017. Population modelling and genetics of a critically endangered Madagascan palm Tahina spectabilis. Ecology and Evolution 10(6): 3120–3137. https://doi.org/10.1002/ece3.6137

Smith LB, & Downs RI. 1974. Pitcairnioideae (Bromeliaceae). Flora Neotropica. Monograph No. 14. Hafner Press, New York, NY.

Sosa P, Batista FJ, González MA, et al. 2002. La conservación genética de las especies vegetales amenazadas. Biología de la Conservación de Especies Amenazadas 4:133-160. http://hdl.handle.net/10553/1285

Suni M, Cano A, & Vadillo G. 2001. Ensayos preliminares de germinación en Puya raimondii harms (Bromeliaceae). Revista Peruana de Biologia 8(1): 53–59. https://doi.org/10.15381/rpb.v8i1.6513

Toro MA, Meuwissen TH, Fernandez J, et al. 2011. Assessing the genetic diversity in small farm animal populations. Animal 5(11): 1669–83. https://doi:10.1017/S1751731111000498

Tumi L, Zhang Y, Wang Z, et al. 2019. Microsatellite markers for the endangered Puya raimondii in Peru. Applications in Plant Sciences 7(12): 1–6. https://doi.org/10.1002/aps3.11308

Vadillo G & Suni M. 2006. Evaluación de sustratos para el establecimiento en laboratorio de plántulas de Puya raimondii Harms (Bromeliaceae). Revista Peruana de Biologia 13(1): 139–141. https://doi.org/10.15381/rpb.v13i1.1777

Vadillo G, Suni M & Roca W. 2007. Evaluación de la diversidad genética y morfológica de Puya raimondii. Instituto Nacional de Recursos Naturales. Serie de publicaciones de flora y fauna silvestre, Lima, Perú.

Vadillo G. 2011. Bases para la Conservación de Puya raimondii Harms (Bromeliaceae). Tesis para optar al Grado de Magister en Botánica. Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos. Lima https://hdl.handle.net/20.500.12672/16578

Venero JL & Hostning R. 1986. Las “Titancas” de Aymaraes (Apurímac). Boletín de Lima 48:83-88.

Villiger F. 1981. Rodales de Puya raimondii y su protección. Boletín de Lima 10: 84-91.

Weeks A, Sgro C, Young A, et al. 2011. Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evolutionary Applications 4: 709–725. https://doi.org/10.1111/j.1752-4571.2011.00192

Young K, Ulloa C, Luteyn J, et al. 2002. Plant evolution and endemism in Andean South America: An introduction. Botanical Review 68(1): 4–21. https://doi.org/10.1663/0006-8101

Yuan S, Zeng G, Shi M, et al. 2017. Development of EST-SSR markers for Primula ovalifolia (Primulaceae) by transcriptome sequencing. Applications in Plant Sciences 5(12): 1700100. https://doi.org/10.3732/apps.1700100

Zanella C, Bruxel M, Paggi G. 2011. Genetic structure and phenotypic variation in wild populations of the medicinal tetraploid species Bromelia antiacantha (Bromeliaceae). American Journal of Botany 98(9): 1511–1519. https://doi.org/10.3732/ajb.1000458

Zhang A, Gao Y, Li G, et al. 2018. Amplification of microsatellite markers for Psammosilene tunicoides (Caryophyllaceae). 6(12): 4–7. https://doi.org/10.1002/aps3.1199

Downloads

Published

05/30/2022

Issue

Section

Articles

How to Cite

Tumi, Liscely, Ge Xue-Jun, Gerson E. Prado, Andrea Cosacov, Victor H. Garcia, Mónica Arakaki, and Mery L. Suni. 2022. “Genetic Diversity and Genetic Structure of Puya Raimondii (Bromeliaceae) for Its Conservation in the Peruvian Andes”. Revista Peruana De Biología 29 (2): e22557. https://doi.org/10.15381/rpb.v29i2.22557.