Evaluation of Ecuadorian genotypes of Capsicum spp. against infestations of Bemisia tabaci

Authors

  • Steeven Muñoz-Ponce Maestría con Trayectoria de Investigación en Sanidad Vegetal, Instituto de Posgrado, Universidad Técnica de Manabí, Portoviejo, 130105, Manabí, Ecuador. https://orcid.org/0000-0001-5354-6590
  • Liliana Corozo-Quiñonez Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador. https://orcid.org/0000-0002-3619-9598
  • Dorys T. Chirinos Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador. https://orcid.org/0000-0001-8125-5862
  • Felipe R. Garcés-Fiallos Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Portoviejo, 130105, Ecuador. https://orcid.org/0000-0002-1795-4439
  • Alvaro Monteros-Altamirano Instituto Nacional de Investigaciones Agropecuarias, INIAP, Estación Experimental Santa Catalina, Departamento Nacional de Recursos Fitogenéticos, DENAREF, Quito, Cantón Mejía, Pichincha, Ecuador. https://orcid.org/0000-0002-1271-3513

DOI:

https://doi.org/10.15381/rpb.v29i3.22729

Keywords:

accessions, chilies, peppers, whitefly, germplasm, insect-plant interaction, plant resistance

Abstract

The genus Capsicum, native to tropical and subtropical America, belongs to the Solanaceae family, which includes commercially important vegetables such as chilies and green peppers. The silverleaf whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), causes losses to vegetables including Capsicum species. Among the alternatives of pest control, an effective, economical, and environmentally compatible method is the resistance of the host plant. Infestation by B. tabaci was evaluated in 73 Capsicum genotypes, corresponding to the species C. annuum, C. baccatum, C. sinense, C. frutescens and C. pubescens from an Ecuadorian genebank. Eighty-four percent of the C. baccatum genotypes evaluated showed the highest population densities of B. tabaci, while all the genotypes of C. sinense and C. frutescens had the lowest values (p < 0.05). The non-preference of adults and the scarce oviposition of B. tabaci on genotypes of C. sinense and C. frutescens suggests resistance due to antixenosis. These results could guide breeding programs for the resistance of Capsicum species to B. tabaci infestations.

Downloads

Download data is not yet available.

References

Al-Aloosi ANS, Al-Anbaki HAM, Kamil SH. 2020. Host plant resistance, chili pepper to whitefly, Bemisia tabaci (Gennadius ) (Hemiptera: Aleyrodidae ) in field. International Journal of Agricultural and Statistics 16(1): 103–106.

Anjos IV, Silva LP, Silva LR, Araújo KL, Amorim AFS, Barelli MAA, Neves L. 2018. Reação de acessos de Capsicum spp. ao fungo Fusarium solani. Summa Phytopathologica 44: 344–349. https://doi.org/10.1590/0100-5405/189662

Ballina-Gomez H, Ruiz-Sanchez E, Chan-Cupul W, Latournerie-Moreno L, Hernández-Alvarado L, Islas-Flores I, Zuñiga-Aguilar JJ. 2013. Response of Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) Biotype B to genotypes of pepper Capsicum annuum (Solanales: Solanaceae). Neotropical Entomology 42: 205–210. https://doi.org/10.1007/s13744-012-0106-0

Cardoso R, Ruas CF, Giacomin RM, Ruas PM, Ruas EA, Barbieri RL, Rodrigues R, Goncalves LSA. 2018. Genetic variability in Brazilian Capsicum baccatum germplasm collection assessed by morphological fruit traits and AFLP markers. PLOS ONE 13(5):e0196468. https://doi.org/10.1371/journal. pone.0196468

Chan Cupul W, Ruiz Sánchez E, Chan Díaz JR, Latournerie Moreno L, Rosado Calderón AT. 2014. Atracción de adultos y preferencia de oviposición de mosquita blanca (Bemisia tabaci) en genotipos de Capsicum annuum. Revista Mexicana de Ciencias Agrícolas 5(1): 77–86. https://doi.org/10.29312/remexca.v5i1.1011

Chirinos DT, Geraud-Pouey F. 1996. Efectos de algunos insecticidas sobre la entomofauna del tomate, en el noroeste del estado Zulia, Venezuela. Interciencia. 21(1): 31-36.

Costa MPSD, do Rêgo MM, da Silva APG, Barroso PA. 2016. Characterization and genetic diversity of pepper (Capsicum spp) parents and interspecific hybrids. Genetics and Molecular Research 15 (2): gmr.15027652. http://doi.org/10.4238/gmr.15027652

Firdaus S, Van Heusden A, Harpenas A, Supena EDJ, Visser RGF, Vosman B. 2011. Identification of silverleaf whitefly resistance in pepper. Plant Breeding 130(6): 708–714. https://doi.org/10.1111/j.1439-0523.2011.01894.x

Gálvez YA, Cea ME, Lesher Gordillo JM, Latournerie-Moreno L, Martínez-Moreno E, Martínez-Sánchez JL, Castañón-Nájera G. 2021. Comparación molecular de poblaciones de chile (Capsicum spp.) de Tabasco y Chiapas, México. Bioagro 33(1): 3–12 https://doi.org/10.51372/bioagro331.1

Geraud-Pouey F, Chirinos DT, Vergara JA. 1996. Efectos colaterales de tratamientos con insecticidas sobre la entomofauna del tomate, Lycopersicon esculentum Miller, cv. Peto Seed en la zona del río Limón del estado Zulia, Venezuela. Rev. Fac. Agron. (LUZ). 13(3): 313-325.

Guo Q, Shu Y, Liu C, Chi Y, Liu Y, Wang X-W. 2020. Transovarial transmission of tomato yellow leaf curl virus by seven species of the Bemisia tabaci complex indigenous to China: Not all whiteflies are the same. Virology 531: 240–247. https://doi.org/10.1016/j.virol.2019.03.009

Jeevanandham N, Marimuthu M, Natesan S, Gandhi K, Appachi S. 2018. Plant resistance in chillies Capsicum spp against whitefly, Bemisia tabaci under field and greenhouse condition. Journal of Entomology and Zoology Studies 6(2): 1904–1914.

Kogan M, Ortman EF. 1978. Antixenosis: a new term proposed to define Painter's "nonpreference" modality of resistance. Bulletin of the Entomological Society of America 24(2):175–176. https://doi.org/10.1093/besa/24.2.175

Kumar Yadav R, Kamala Jayanthi PD, Kumar M, Saravan Kumar P, Rao K, Madhavi Reddy K. 2020. Screening chilli genotypes for whitefly (Bemisia tabaci Genn.) resistance: A vector for chilli leaf curl virus. International Journal of Chemical Studies 8(1): 971–979

Latournerie-Moreno L, Ic-Caamal A, Ruiz-Sánchez E, Ballina-Gómez H, Islas-Flores I, Chan-Cupul W, González-Mendoza D. 2015. Survival of Bemisia tabaci and activity of plant defense-related enzymes in genotypes of Capsicum annuum L. Chilean Journal of Agricultural Research 75(1): 71–77. https://doi.org/10.4067/S0718-58392015000100010

Li Y, Mbata GN, Punnuri S, Simmons AM, Shapiro-Ilan DI. 2021. Bemisia tabaci on Vegetables in the Southern United States: Incidence, impact, and management. Insects 12(3): 198, https://doi.org/10.3390/insects12030198

Lorenzo ME, Grille G, Bonato O. 2016. Host preferences and biotic potential of Trialeurodes vaporariorum and Bemisia tabaci (Hemiptera: Aleyrodidae) in tomato and pepper. Arthropod-Plant Interactions 10: 293–301. https://doi.org/10.1007/s11829-016-9434-z

Lucatti AF, van Heusden AW, de Vos RC, Visser RG, Vosman B. 2013. Differences in insect resistance between tomato species endemic to the Galapagos Islands. BMC Evolutionary Biology, 13(1):175. https://doi.org/10.1186/1471-2148-13-175

Monteros-Altamirano A, Tacán M, Peña G, Tapia C, Paredes N, Lima L. 2018. Guía para el manejo y conservación de recursos fitogenéticos en Ecuador. Protocolos. Publicación miscelánea No. 432. Santa Catalina: INIAP-FAO. 104 pp.

Nombela G, Muñiz M. 2010. Host Plant Resistance for the Management of Bemisia tabaci: A Multi-crop Survey with Emphasis on Tomato. In: Bionomics and Management of a Global Pest. [Dordrecht]: Springer; p. 357–383. https://doi.org/10.1007/978-90-481-2460-2

Ortega ES, Veggiani-Aybar CA, Ávila AL, Reguilón C. 2019. Estudio preliminar de la fluctuación de Bemisia tabaci (Hemiptera: Aleyrodidae) en cultivos de tomate y pimiento bajo cubierta, Tucumán, Argentina. Intropica 14(1): 60-64. https://doi.org/10.21676/23897864.2766

Pantoja KFC, Rocha KCG, Melo AMT, Marubayashi JM, Baldin ELL, Bentivenha JPF, Gioria R, Kobori RF, Pavan MA, Krause-Sakate R. 2018. Identification of Capsicum accessions tolerant to Tomato severe rugose virus and resistant to Bemisia tabaci Middle East-Asia Minor 1 (MEAM1). Tropical Plant Pathology 43: 138–145. https://doi.org/10.1007/s40858-018-0212-6

Qin C, Yu C, Shen Y, Fang X, Chen L, Min J, Cheng J, Zhao S, Zu M, Lou Y, et al. 2014. Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. PNAS 111(14): 5135–5140. https://doi.org/10.1073/pnas.1400975111

Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. 2019. InfoStat versión 2019. Cordoba, Argentina: Centro de Transferencia InfoStat, FCA http://www.infostat.com.ar

Sripontan Y, Chiu C-I, Charoensak K, Sukthongsa N. 2022. Host selection of the tobacco whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) among four pepper cultivars (Capsicum spp.), Thailand. Khon Kaen Agriculture Journal 50(3): 899-909. https://doi.org/10.14456/kaj.2022.77.900

Tripodi P, Kumar S. 2019. The Capsicum Crop: An Introduction. In: The Capsicum Genome, Compendium of Plant Genomes. [Switzerland] Springer Nature; p. 1–8. https://doi.org/10.1007/978-3-319-97217-6_1

Vallejo-Gutiérrez AJ, Mejía-Carranza J, García-Velasco R, Ramírez-Gerardo MG. 2019. Respuesta de genotipos de Capsicum pubescens al daño ocasionado por el complejo fúngico de la marchitez. Revista Mexicana de Fitopatología 37(1): 50–70. https://doi.org/10.18781/r.mex.fit.1809-3

Yánez P, Rivadeneira L, Balseca D, Larenas C. 2015. Características morfológicas y de concentración de capsaicina en cinco especies nativas del género Capsicum cultivadas en Ecuador. La Granja: Revista de Ciencias de la Vida 22(2): 12–32. https://doi.org/10.17163/lgr.n22.2015.02

Downloads

Published

08/28/2022

Issue

Section

Articles

How to Cite

Muñoz-Ponce, Steeven, Liliana Corozo-Quiñonez, Dorys T. Chirinos, Felipe R. Garcés-Fiallos, and Alvaro Monteros-Altamirano. 2022. “Evaluation of Ecuadorian Genotypes of Capsicum Spp. Against Infestations of Bemisia Tabaci”. Revista Peruana De Biología 29 (3): e22729. https://doi.org/10.15381/rpb.v29i3.22729.