The Heat and Schr¨odinger Equation in Weighted Spaces

Authors

  • Nancy Moya Lázaro Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Lima, Peru
  • Teodoro Sulca Paredes Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Lima, Peru
  • Gladys Chancan Rojas Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Lima, Peru

DOI:

https://doi.org/10.15381/pesquimat.v27.i2.27401

Keywords:

Heat equation, Schr¨odinger operators, weighted spaces, locally uniform spaces, analytical semigroup, fractional power spaces

Abstract

This article analyzes the solution of the heat equation and the Schrödinger equation in Sobolev space with weight in RN. With weights ρ in the class Rρ1,ρ2 it is proven that the heat equation hs a unique solution u(t):=S(t)u0, where  {S(t) := eΔt}t≥0 is the analytical semigroup generated by the elliptic operator second-order linear −Δ realized in the Banach space Lqρ(RN). We also prove thath the Schrödinger operator −Δ − V (x)I, with potentials V in locally uniform sapces in RN generates an anlytical semigroup SV (t) := e(Δ+V (x)I)t that preserves order in Lqρ(RN) and has the same fractional power spaces of −Δ.

Downloads

Published

2024-12-30

Issue

Section

Artículos originales

How to Cite

The Heat and Schr¨odinger Equation in Weighted Spaces. (2024). Pesquimat, 27(2), 11-20. https://doi.org/10.15381/pesquimat.v27.i2.27401